

Kansas
Computer Science

Standards

Grades P-12

Adopted April 16, 2019

About the Kansas P-12 Computer Science Model Standards
To be well-educated citizens in a computing-intensive world and to be prepared for careers in the 21st century, our students must have
a clear understanding of the principles and practices of computer science. The Kansas P-12 Computer Science Model Standards
delineate a core set of learning objectives designed to provide the foundation for a complete computer science curriculum and its
implementation at the P–12 level. To this end, the Standards:

 Introduce the fundamental concepts of computer science to all students, beginning at the primary school level.

 Develop the practices of computational thinking in a sequential progression from pre-kindergarten through high school.

 Encourage schools to offer additional secondary-level computer science courses that will allow interested students to study
facets of computer science in more depth and prepare them for entry into the work force or college.

 Increase the availability of rigorous computer science for all students, especially those who are members of underrepresented
groups.

The standards have been written by educators to be coherent and comprehensible to teachers, administrators, and policy makers.
Grades P-5, middle grades, and secondary L1 are the computer science standards for all students. The secondary L2 standards are
intended for students who wish to pursue the study of computer science beyond what is expected of all students (specialty or elective
courses).

Connection to the K-12 Computer Science Framework and CSTA Standards
The K–12 Computer Science Framework (k12cs.org) provides overarching, high-level guidance per grade bands, while the standards
provide detailed, measurable student performance expectations. The Framework, and the subsequent Computer Science Teachers
Association (CSTA) standards document, were considered as primary inputs for the Kansas standards development process.

Concepts Practices
 1. Computing Systems

2. Networks and the Internet
3. Data Analysis
4. Algorithms and Programming
5. Impacts of Computing

 1. Fostering an Inclusive Computing
Culture

2. Collaborating Around Computing
3. Recognizing and Defining

Computational Problems

4. Developing and Using Abstractions
5. Creating Computational Artifacts
6. Testing and Refining Computational

Artifacts
7. Communicating About Computing

Kansas Computer Science Committee

Information about standards committee formation was shared with the education community via KSDE listservs, meetings, and the

State Board of Education. A registration site was developed with the purpose of obtaining nominations for the standards development

committees. Individuals could either self-nominate or could recommend someone. The registration site asked for name, address, email,

board district, job title, gender, race, education level, committee group interest, and years of work experience. KSDE staff were asked to

ensure that committee members for the standards committees consisted of diversity of gender, race, ethnicity, and education level (K-

12 and post-secondary). Special care was taken to ensure that every state board district was represented.

In addition to the committee members the computer science standards committee had a “Representative” ad-hoc group which was

comprised of postsecondary, business/community, and military representatives. These individuals were interested in the standards

review process and their role was to participate in the discussions and provide feedback.

Writing Subcommittee Review Subcommittee Representative Group

Chris Holborn, USD 475 Amy Benz, USD 320 Robert Burcham, Business & Industry
Gwen Lehman, USD 495 Tyler Bruce, USD 483 Steven Case, PhD, University of Kansas

Laura Leis, USD 400 Pam Collinge, USD 389 Charmine Chambers, KBOR
Craig Miller, USD 475 Ross Davis, USD 508 Anna Hennes, Business & Industry

Shane Munro, USD 259 David Dennis, USD 259 Chris Issacson, Business & Industry
Matthew Peak, USD 503 Barbra Gonzales, USD 233 David Kaercher, Business & Industry

Kristy Randel, USD 253 Matthew Lewis, USD 259 Meg Knauth, Business & Industry
Gary Richmond, USD 464 Brittney Quelch, USD 475 Jason Knobbe (COL), Military

Bryan Salsgiver, USD 229 Brenda Thompson, USD 373 Alan Lowden, Business & Industry
Samuel Simmons, Sr. USD 500 Lisa Whallon, USD 233 Ryan Weber, Business & Industry

Steven Stoffregen, USD 465 Tyler Wolf, USD 348 Bruce Wellman, NGSS
Jill Thompson, USD 264 Kelley Wyatt, USD 464
Travis True, USD 501

Josh Weese, PhD, Kansas State University
Chris Wyant, Wichita State University

Grade PK (Pre-Kindergarten)
Computing Systems
Identifier Standard and Descriptive Statement Subconcept Practice(s)

PK.CS.D.01 With guidance, demonstrate how to operate a computing device.

People use computing devices to perform a variety of tasks
accurately and quickly. With guidance, students should be able to
select the appropriate app/program to use for tasks they are required
to complete. For example, if students are asked to draw a picture,
they should be able to open and use a drawing app/program to
complete this task.

Devices 7. Communicating
about computing

PK.CS.HS.01 With guidance, use appropriate terminology to locate and identify
common computing devices and components in a variety of
environments (e.g. turn on, navigate, open/close programs/apps).

A computing system is composed of hardware and software.
Hardware consists of physical components. With guidance, students
should be able to identify and describe the function of external
hardware, such as desktop computers, laptop computers, tablet
devices, monitors, keyboards, mice, and printers.

Hardware and
Software

7. Communicating
about computing

PK.CS.HS.02 With guidance, correctly use software that controls computing
devices (e.g. e.g. programs, browsers, websites, and applications).

Computer software and apps are programmed and installed on hard
drives on various devices utilized by every end user. Software
provides code for the programs to compute properly for the created
operation. Software apps and programs interact with one another to
provide an intended outcome or output. With guidance, students
should be able to open, use, and close varying programs, apps, or
software.

Hardware and
Software

1. Fostering an
inclusive
computing culture

PK.CS.IO.01 With guidance, identify and apply basic input/output skills.

 Input (keyboarding, mouse, touchscreen, voice, camera,
interactive board)

 Output (monitor, screen, printer, audio).

Input and Output 7. Communicating
about computing

Input devices are used to input data for the creation of various digital
products. Some input devices a person could use include voice input,
touchpad, touchscreen, mouse, keyboarding (Keyboarding - practice
locating space bar, enter key, and developmentally appropriate
letters.) Output devices are how a computer displays information,
which includes the screen, monitor, speaker, or printer.

PK.CS.T.01 Recognize that computing systems might not work as expected and
with guidance can identify simple hardware or software problems
(e.g. volume turned down on headphones, monitor turned off).

Problems with computing systems have different causes. Students at
this level do not need to understand those causes, but they should be
able to communicate a problem (e.g., when an app or program is not
working as expected, a device will not turn on, the sound does not
work, etc.). Ideally, students would be able to use simple
troubleshooting strategies, including turning on and off the device,
turning on speakers, adjusting volume, or plugging in headphones.
These are, however, not specified in the standard, because these
problems may not occur.

Troubleshooting 6. Testing and
refining
computational
artifacts
7. Communicating
about computing

Networks & the Internet
Identifier Standard and Descriptive Statement Subconcept Practice(s)

PK.NI.NCO.01 Recognize that computing devices are connected via wired or wireless
networks so that they can communicate with each other.

Networking and interconnectivity of computing devices are essential in
today's society. Through wi-fi, bluetooth, or hard line ethernet
connections, the ability of information to be shared with an organized,
secure and reliable system, is an integrated range of platforms which
uses various software and hardware. Students should have an
awareness the device is connected to another device.

Network
Communication &
Organization

7. Communicating
about computing

PK.NI.C.01 Recognize that passwords are private and should be kept secret.

Learning to protect one's device or information from unwanted use by
others is an essential first step in learning about cybersecurity.

Cybersecurity 7. Communicating
about computing

Data Analysis
Identifier Standard and Descriptive Statement Subconcept Practice(s)

PK.DA.S.01 Know that the computing device can save information as data that can
be searched, modified, and saved or deleted (e.g. save photos, files, or
videos).

All information stored and processed by a computing device is referred
to as data. Data can be images, text documents, audio files, software
programs or apps, video files, etc. As students use software to complete
tasks on a computing device, they will be manipulating data. Students
should be aware that information can be found or searched on a device.

Storage 4. Developing and
using abstractions

PK.DA.C.01 Students understand that data about themselves and the world around
them is collected, used, and organized in a meaningful way.

The collection and use of data about the world around them is a routine
part of life and influences how people live.

Collection 4. Developing and
using abstractions
7. Communicating
about computing

PK.DA.CVT.01 Students represent collected data in a visual way. (e.g. charts, graphs,
tables).

Data can be used to make inferences or predictions about the world.
Students could analyze a graph or pie chart of the colors in a bag of
candy or identify the patterns for which colors are most and least
represented, and then make a prediction as to which colors will have
most and least in a new bag of candy. Students can explore bar graphs
or line graphs to analyze what has more or less. This can be done
without a computing device - paper, interactive board, chart paper, class
graph, etc.

Visualization &
Transformation

7. Communicating
about computing

PK.DA.IM.01 Students look for patterns in data, make predictions, and make a model
(e.g. make predictions on weather data, butterfly life cycle, etc.) and
present in a picture graph or pattern.

Data can be represented in models to portray results and to assist in
identifying patterns in the world around us. This type of data is
represented in a more visual way outside of lines, bars, and charts. This
would include life cycles, weather maps, and processes. Students will

Inference and
Models

4. Developing and
using abstractions

show data in a pattern. With guidance, students will show what would
be next in a basic pattern, or what might be missing from a pattern. This
could be a color pattern, number pattern, animal pattern, etc. It can be
as basic as ABAB, or ABBABB.

Algorithms and Programming
Identifier Standard and Descriptive Statement Subconcept Practice(s)

PK.AP.A.01 With guidance, construct and execute algorithms (set of step-by-step
instructions) that includes sequencing and simple loops to accomplish a
task, with or without a computing device (e.g. verbally, kinesthetically,
with robot devices or a programming language, block coding).

Algorithmic thinking is the ability to define clear steps to solve a
problem. A process to complete a task (such as the steps to tie your
shoes), and recipes are examples of algorithms. Expose students to the
term algorithm as they are sequencing events or processes like getting
ready for school in the morning.

Algorithms 4. Developing and
using abstractions

PK.AP.V.01 With guidance, understand that numbers represent different types of
data using numbers or other symbols (e.g. thumbs up/thumbs down for
yes/no color by number, arrows for direction, encoding/decoding a word
using numbers or pictographs).

Information in the real world can be represented in computer programs.
Students could use thumbs up/down as representations of yes/no, use
arrows when writing algorithms to represent direction, or encode and
decode words using numbers, pictographs, or other symbols to
represent letters or words.

Variables 4. Developing and
using abstractions

PK.AP.C.01 With guidance, create programs to accomplish tasks using a
programming language, robot device, or unplugged activity that includes
sequencing events and simple loops (e.g. emphasizing beginning,
middle, and end; collaborative programming).

Programming is used as a tool to create products that reflect a wide
range of interests. Control structures specify the order in which
instructions are executed within a program. Emphasize the sequence of
events, such as left right, up, down. Get from one point to another on a

Control 5. Creating
computational
artifacts

map. Explore basic robots that use arrows for direction, or search for
lessons on CS unplugged fundamentals.

PK.AP.M.01 With guidance, decompose (break down) a larger problem into smaller
subproblems.

Decomposition is the act of breaking down tasks into simpler tasks.
Students could break down the steps needed to make breakfast, get
ready for school, to move a character across the screen. This can be
done with or without a computing device.

Modularity 3. Recognizing
and defining
computational
problems

PK.AP.PD.01 Create a design document to illustrate thoughts, ideas, and stories in a
sequential manner.

Creating a design document for what a program will do clarifies the
steps that will be needed to create a program and can be used to check
if a program is correct. Students could create a planning document such
as a story map to illustrate what their program will do.

Program
Development

5. Creating
computational
artifacts
7. Communicating
about computing

PK.AP.PD.02 Recognize that digital items can be owned and that proper credit needs
to be given (e.g. using code, music, pictures).

Using computers comes with a level of responsibility. Students should
recognize that artifacts were created by others, such as pictures, music,
and code.

Program
Development

7. Communicating
about computing

PK.AP.PD.03 With guidance, construct, execute, and debug (identify and fix)
algorithms using a programming language and or an unplugged activity
that includes sequencing (e.g. use block based programming).

Algorithms or programs may not always work correctly. With guidance,
students should be able to use various strategies, such as changing the
sequence of the steps, following the algorithm in a step-by-step manner,
or trial and error to fix problems in algorithms and programs.

Program
Development

6. Testing and
refining
computational
artifacts

PK.AP.PD.04 With guidance, use correct terminology in the development of an
algorithm to solve a simple problem (e.g. beginning, middle, end).

With guidance, students should be able to talk or write about the goals
and expected outcomes of the programs they create and the choices

Program
Development

7. Communicating
about computing

that they made when creating programs. This could be done through
discussions with the teacher or class.

Impacts of Computing
Identifier Standard and Descriptive Statement Subconcept Practice(s)

PK.IC.C.01 Understand different ways in which types of technologies are used in
your daily life.

In the past, if students wanted to read about a topic, they needed
access to a library to find a book about it. Today, young students can
view and read information on the Internet about a topic or they can
download e-books about it directly to a device. Such information may be
available in more than one language and could be read to a student,
allowing for great accessibility. Students should develop an awareness
in describing various ways technology can impact their world. (e.g.
checking out at a store, buying lunch, using an iPhone or Android device
to call in an emergency, or learning through video sharing).

Culture 7. Communicating
about computing

PK.IC.SI.01 With guidance understand what would be appropriate while participating
in an online environment. (Digital Citizenship - focus on Digital Literacy).

The practice of appropriate online behavior derives from the
identification of inappropriate behavior and the identification of what
makes someone a poor digital citizen or know what not to do in order to
be ethical online. Communicate to students the importance of being safe
online by only using sites approved by an adult. Encourage students to
tell an adult if they feel uncomfortable or see something they feel is not
appropriate. The practice of appropriate online behavior derives from
the identification of inappropriate behavior and the identification of what
makes someone a poor digital citizen or know what not to do in order to
be ethical online. Digital citizenship is described with nine categories,
however PreK-2 will focus on 4 of these: Digital Literacy (the ability to
use new technology quickly and appropriately), Digital Etiquette
(appropriate conduct), Digital Rights and Responsibilities (knowing your
rights to free speech and privacy, but handling it responsibly online), and
Digital Health and Wellness (caring for your physical and psychological
well-being online).

Social
Interactions

2. Collaborating
around computing

PK.IC.H.01 Understand that computing technology has changed and improved the
way people live, work, and interact.

As computers become interconnected in each aspect of society, more
powerful, and students become more reliant on them, students will
engage in discussions about how they have evolved since their parents
were in school and relate the newest devices they have at home.

History 7. Communicating
about computing

PK.IC.SLE.01 With guidance understand responsible digital citizenship (legal and
ethical behaviors) in the use of technology systems and software.

People use computing technology in ways that can help or hurt
themselves or others. Expose students to sharing devices and leaving
the device ready for the next user (closing programs, etc.). Explain how
passwords or login methods are used and why we protect devices with
these.

Safety, Law, &
Ethics

2. Collaborating
around computing

PK.IC.CP.01 Discuss the fact that a wide range of jobs require knowledge or use of
computer science.

Within the inevitable interwoven fabric of society's reliance and
innovative machines, students will required to have basic assumable
skills when entering the workforce. Students should be able with
guidance, picture digital computing devices and word usage necessary
to create a modernized mode of everyday activities in the technological
age. An example would be for students to list how a bus driver can use
GPS, safety features, and indicators to provide safe travel to school.

Community
Partnerships

7. Communicating
about computing

Grade K (Kindergarten)
Computing Systems
Identifier Standard and Descriptive Statement Subconcept Practice(s)

K.CS.D.01 Demonstrate how to operate a variety of computing devices.

People use computing devices to perform a variety of tasks accurately
and quickly. After Instruction, students should be able to select the
appropriate app/program to use for tasks they are required to complete,
then power down or log off. For example, if students are asked to draw a
picture, they should be able to open and use a drawing app/program to
complete this task.

Devices 7. Communicating
about computing

K.CS.HS.01 Use appropriate terminology to locate and identify common computing
devices and components in a variety of environments (e.g. turn on,
navigate, open/close programs/apps).

A computing system is composed of hardware and software. Hardware
consists of physical components. After instruction, students should be
able to identify and describe the function of external hardware, such as
desktop computers, laptop computers, tablet devices, monitors,
keyboards, mice, and printers.

Hardware and
Software

7. Communicating
about computing

K.CS.HS.02 Identify and use software that controls computing devices (e.g.
programs, browsers, websites, and applications).

Computer software and apps are programmed and installed on hard
drives on various devices utilized by every end user. Software provides
code for the programs to compute properly for the created operation.
Software apps and programs interact with one another to provide an
intended outcome or output. With guidance, students should be able to
associate the icon with the appropriate program/application and its use,
then open, use, and close programs, apps, or software. This could
include, but not limited to, district purchased client-based reading or
math program software, apps for a specific learning method, or
accessing a browser to navigate web based programs.

Hardware and
Software

1. Fostering an
inclusive
computing culture

K.CS.IO.01 Identify and apply basic input/output skills.

 Input (keyboarding, mouse, touchscreen, voice, camera, robotics,
interactive board)

Input and Output 7. Communicating
about computing

 Output (monitor, screen, printer, robotics, audio).

Input devices are used to input data for the creation of various digital
products. Some input devices a person could use include voice input,
touchpad, touchscreen, mouse, keyboarding (Keyboarding - practice
locating space bar, enter key, and developmentally appropriate letters.
Students should understand the left hand is used for the left side of the
keyboard, and the right hand is used on the right side. This includes the
understanding the general layout of the keys including developmentally
appropriate number recognition.) Output devices are how a computer
displays information, which includes the screen, monitor, speaker, or
printer.

K.CS.T.01 Recognize that computing systems might not work as expected and use
accurate terminology to identify simple hardware or software problems
(e.g. volume turned down on headphones, monitor turned off).

Problems with computing systems have different causes. Students at
this level do not need to understand those causes, but they should be
able to communicate a problem with accurate terminology (e.g., when
an app or program is not working as expected, a device will not turn on,
the sound does not work, etc.). Ideally, students would be able to use
simple troubleshooting strategies, including turning a device off and on
to reboot it, closing and reopening an app, turning on speakers, or
plugging in headphones. These are, however, not specified in the
standard, because these problems may not occur.

Troubleshooting 6. Testing and
refining
computational
artifacts
7. Communicating
about computing

Networks & the Internet
Identifier Standard and Descriptive Statement Subconcept Practice(s)

K.NI.NCO.01 Recognize and use computing devices to connect with people or other
devices using a network to communicate, access, and share information
as a class (e.g. the internet, video conferencing, email, file transfer).

Networking and interconnectivity of computing devices are essential in
today's society. Through wi-fi, bluetooth, or hard line ethernet
connections, the ability of information to be shared with an organized,
secure and reliable system, is an integrated range of platforms which

Network
Communication &
Organization

7. Communicating
about computing

uses various software and hardware. Students should understand
whether information is being sent to the program or device. (e.g., the
teacher laptop is being connected to the LCD projector, or if the wi-fi or
internet connection is active.

K.NI.C.01 Use a form of secure access to protect private information and discuss
the effects of password misuse (e.g. logging into a device, educational
websites, authentication, thumbprint recognition).

Learning to protect one's device or information from unwanted use by
others is an essential first step in learning about cybersecurity. Students
should appropriately use and protect the passwords they are required to
use.

Cybersecurity 7. Communicating
about computing

Data Analysis
Identifier Standard and Descriptive Statement Subconcept Practice(s)

K.DA.S.01 With guidance, demonstrate that computing devices can save
information as data that can be searched, modified, and saved or
deleted (e.g. save photos, files, or videos).

All information stored and processed by a computing device is referred
to as data. Data can be images, text documents, audio files, software
programs or apps, video files, etc. As students use software to complete
tasks on a computing device, they will be manipulating data. With
guidance, students will search, save, or delete data. This can be a web
search, save and retrieve a photo, take a screenshot, or saving or
printing their creations.

Storage 4. Developing and
using abstractions

K.DA.C.01 Students will learn how data about themselves and the world around
them is collected, used, and organized in a meaningful way.

The collection and use of data about the world around them is a routine
part of life and influences how people live. Students could collect data
on the weather, such as sunny days versus rainy days, the temperature
at the beginning of the school day and end of the school day, or the
inches of rain over the course of a storm.

Collection 4. Developing and
using abstractions
7. Communicating
about computing

K.DA.CVT.01 Students represent collected data in a visual way through a computing
device (e.g. charts, graphs, tables).

Visualization &
Transformation

7. Communicating
about computing

Data can be used to make inferences or predictions about the world.
Students could analyze a graph or pie chart of the colors in a bag of
candy or the averages for colors in multiple bags of candy, identify the
patterns for which colors are most and least represented, and then
make a prediction as to which colors will have most and least in a new
bag of candy. With guidance, students could create charts or graphs in
spreadsheet applications, web based programs, or visually in digital
drawings to portray data collected. This data could include types of
pets, number of siblings, shoe size, etc. This could be done with an
interactive board, tablets, or computer.

K.DA.IM.01 Students look for patterns in data, make predictions, make a model, and
draw conclusions (e.g. make predictions on weather data, butterfly life
cycle, etc.) and present in a picture graph or pattern.

Data can be represented in models to portray results and to assist in
identifying patterns in the world around us. This type of data is
represented in a more visual way outside of lines, bars, and charts.
This would include life cycles, weather maps, and processes. Students
will show data in a pattern. Students will create models to show data
which could include pictographs of favorite cookie, fruit, sport, or models
also include Students will show what would be next in a pattern, or
what might be missing from a pattern. This could be a color pattern,
number pattern, animal pattern, etc. It can be as basic as ABAB, or
ABBABB.

Inference and
Models

4. Developing and
using abstractions

Algorithms and Programming
Identifier Standard and Descriptive Statement Subconcept Practice(s)

K.AP.A.01 Construct and execute algorithms (set of step-by-step instructions) that
includes sequencing and simple loops to accomplish a task, both
independently, collaboratively, with or without a computing device (e.g.
verbally, kinesthetically, with robot devices or a programming language,
block coding).

Algorithmic thinking is the ability to define clear steps to solve a
problem. A process to complete a task (such as the steps to tie your

Algorithms 4. Developing and
using abstractions

shoes), and recipes are examples of algorithms. Expose students to the
term algorithm as they are sequencing events or processes like getting
ready for school in the morning. Students should create algorithms
(specific steps) to accomplish a task.

K.AP.V.01 With guidance, recognize that numbers represent different types of data
using numbers or other symbols (e.g. thumbs up/thumbs down for
yes/no color by number, arrows for direction, encoding/decoding a word
using numbers or pictographs).

Information in the real world can be represented in computer programs.
Students could use thumbs up/down as representations of yes/no, use
arrows when writing algorithms to represent direction, use emojis that
represent emotion, or encode and decode words using numbers,
pictographs, or other symbols to represent letters or words.

Variables 4. Developing and
using abstractions

K.AP.C.01 With guidance, independently or collaboratively create programs to
accomplish tasks using a programming language, robot device, or
unplugged activity that includes sequencing events and simple loops
(e.g. emphasizing beginning, middle, and end; collaborative
programming).

Programming is used as a tool to create products that reflect a wide
range of interests. Control structures specify the order in which
instructions are executed within a program. Emphasize the sequence of
events, such as left right, up, down. Get from one point to another on a
map. Explore basic robots that use arrows for direction, or search for
lessons on CS unplugged fundamentals.

Control 5. Creating
computational
artifacts

K.AP.M.01 With guidance, decompose (break down) a larger problem into smaller
subproblems or combine simple tasks to make something more
complex.

Decomposition is the act of breaking down tasks into simpler tasks.
Students could break down the steps needed to make breakfast, get
ready for school, to move a character across the screen. Combining
tasks could include being given objects to construct sub parts that go
together to make a more complex creation (e.g., building structures out

Modularity 3. Recognizing
and defining
computational
problems

of Legos, then combining them into a town or community). This can be
done with or without a computing device.

K.AP.PD.01 Create a design document to illustrate thoughts, ideas and stories in a
sequential manner (e.g. storyboard, mindmap, sequential graphic
organizer).

Creating a design document for what a program will do clarifies the
steps that will be needed to create a program and can be used to check
if a program is correct. Students could create a planning document,
such as a story map, a storyboard, or a sequential graphic organizer, to
illustrate what their program will do. Students at this stage may complete
the planning process with help from their teachers.

Program
Development

5. Creating
computational
artifacts
7. Communicating
about computing

K.AP.PD.02 With guidance, give credit to ideas, creations, and solutions of others
while developing algorithms (e.g. using code, music, pictures).

Using computers comes with a level of responsibility. With guidance,
students should credit artifacts that were created by others, such as
pictures, music, and code. Credit could be given orally, if presenting
their work to the class, or in writing or orally, if sharing work on a class
blog or website. Proper attribution at this stage does not require a formal
citation, such as in a bibliography or works cited document.

Program
Development

7. Communicating
about computing

K.AP.PD.03 With guidance, independently or collaboratively construct, execute, and
debug (identify and fix) algorithms using a programming language and
or an unplugged activity that includes sequencing (e.g. use block based
programming).

Algorithms or programs may not always work correctly. With guidance,
students should be able to use various strategies, such as changing the
sequence of the steps, following the algorithm in a step-by-step manner,
or trial and error to fix problems in algorithms and programs
independently or collaboratively.

Program
Development

6. Testing and
refining
computational
artifacts

K.AP.PD.04 Use correct terminology in the development of an algorithm to solve a
simple problem (e.g. beginning, middle, end).

At this stage, students should be able to talk or write about the goals
and expected outcomes of the programs they create and the choices

Program
Development

7. Communicating
about computing

that they made when creating programs. This could be done using
coding journals, discussions with a teacher, or class presentations.

Impacts of Computing
Identifier Standard and Descriptive Statement Subconcept Practice(s)

K.IC.C.01 Understand different ways in which types of technologies are used in
your daily life.

In the past, if students wanted to read about a topic, they needed
access to a library to find a book about it. Today, students can view and
read information on the Internet about a topic or they can download e-
books about it directly to a device. Such information may be available in
more than one language and could be read to a student, allowing for
great accessibility. Students should be able to analyze where and when
various ways technology can be used. (e.g., checking out at a store,
buying lunch, using an iPhone or Android device to call in an
emergency, or learning through video sharing).

Culture 7. Communicating
about computing

K.IC.SI.01 With guidance identify appropriate manners while participating in an
online environment. (Digital Citizenship - focus on Digital Literacy and
Digital Etiquette)

The practice of appropriate online behavior derives from the
identification of inappropriate behavior and the identification of what
makes someone a poor digital citizen or know what not to do in order to
be ethical online. Students practice online safety by only using sites
approved by an adult. Encourage students to tell an adult if they feel
uncomfortable or see something they feel is not appropriate. Make
students aware of the privacy of the digital resources being used in the
classroom and who sees what is being posted (social media - the
teacher posting class photos, students posting to online platforms such
as SeeSaw, data from testing sites such as iStation and Lexia.) Digital
citizenship is described with nine categories, however PreK-2 will focus
on 4 of these: Digital Literacy (the ability to use new technology quickly
and appropriately), Digital Etiquette (appropriate conduct), Digital Rights
and Responsibilities (knowing your rights to free speech and privacy, but

Social
Interactions

2. Collaborating
around computing

handling it responsibly online), and Digital Health and Wellness (caring
for your physical and psychological well-being online).

K.IC.H.01 Discuss examples of how computing technology has changed and
improved the way people live, work, and interact.

As computers become interconnected in each aspect of society, more
powerful, and students become more reliant on them, students should
be able describe the number of times computers or devices are
accessed each day by teachers or peers in class and discuss what life
would be like without them.

History 7. Communicating
about computing

K.IC.SLE.01 Practice responsible digital citizenship (legal and ethical behaviors) in
the use of technology systems and software.

People use computing technology in ways that can help or hurt
themselves or others. Teach students about sharing devices and leaving
the device ready for the next user (closing programs, logging out, etc.)
Use passwords or other log in methods, learning why we protect devices
and programs (such as online assessment) with these. Students should
understand they should never post as another person (blogs, SeeSaw,
etc.).

Safety, Law, &
Ethics

2. Collaborating
around computing

K.IC.CP.01 Understand that a wide range of jobs require knowledge or use of
computer science.

Within the inevitable interwoven fabric of society's reliance and
innovative machines, students will required to have basic assumable
skills when entering the workforce. Students should be able to identify
after initial instruction what digital computing devices and languages are
necessary to create a modernized mode of everyday activities in the
technological age. An example would be for students to list how a bus
driver can use GPS, safety features, and indicators to provide safe
travel to school.

Community
Partnerships

7. Communicating
about computing

First Grade
Computing Systems
Identifier Standard and Descriptive Statement Subconcept Practice(s)

1.CS.D.01 With guidance, select and use a computing device to perform a variety
of tasks for an intended outcome.

People use computing devices to perform a variety of tasks accurately
and quickly. Students should be able to select the appropriate
app/program to use for tasks they are required to complete, then log off
or power down. For example, if students are asked to draw a picture,
they should be able to open and use a drawing app/program to
complete this task, or if they are asked to create a presentation, they
should be able to open and use presentation software. In addition, with
teacher guidance, students should be aware that different software has
the same primary functionality (e.g. Keynote, PowerPoint, Google
Slides).

Devices 7. Communicating
about computing

1.CS.HS.01 Use appropriate terminology in identifying and describing the function of
common computing devices and components (e.g., use an app to draw
on the screen, use software to write a story or control robots).

A computing system is composed of hardware and software. Hardware
consists of physical components. Software provides a computer a set of
instructions to follow. Students should be able to identify and describe
the function of software and hardware such as interactive boards, touch
screen devices, and robotics.

Hardware and
Software

7. Communicating
about computing

1.CS.HS.02 With guidance select and use appropriate software/apps for an intended
outcome (e.g., programs, browsers, websites, and applications).

Computer software and apps are programmed and installed on hard
drives on various devices utilized by every end user. Software provides
code for the programs to compute properly for the created operation.
Software apps and programs interact with one another to provide an
intended outcome or output. Students should be able to identify the
application or program required for a desired activity. This could include,
but not limited to, district purchased client-based reading or math
program software, apps for a specific learning methods Reading Eggs,

Hardware and
Software

1. Fostering an
inclusive
computing culture

iMovie, Google Apps, Seesaw, or accessing a browser to navigate web
based programs.

1.CS.IO.01 Understand and apply basic input/output skills.

 Input (keyboarding, mouse, touchscreen, voice, camera, robotics,
interactive board)

 Output (monitor, screen, printer, 3D printer, robotics, audio)

Input devices are used to input data for the creation of various digital
products. Some input devices a person could use include voice input,
touchpad, touchscreen, mouse, keyboarding (Keyboarding - practice
locating space bar, enter key, and developmentally appropriate letters.
Students should understand the left hand is used for the left side of the
keyboard, and the right hand is used on the right side. This includes the
understanding that the keyboard is not in alphabetical order and the
general layout of the keys including the location of numbers and basic
punctuation.) Output devices are how a computer displays information.
Student should understand the use of output devices such as audio,
video, screen display, robotics, and printers.

Input and Output 7. Communicating
about computing

1.CS.T.01 Identify and describe basic hardware and software problems using
accurate terminology (app or program is not working as expected, no
sound is coming from the device, caps lock turned on, wi-fi not working).

Problems with computing systems have different causes. Students at
this level will start to understand those causes, communicate the
problem with accurate terminology, and seek solutions to that problem
(e.g., when an app or program is not working as expected, a device will
not turn on, the sound does not work, etc.). Ideally, students would be
able to use simple troubleshooting strategies, including turning a device
off and on to reboot it, closing and reopening an app, checking wi-fi,
turning on speakers, or plugging in headphones. These are, however,
not specified in the standard, because these problems may not occur.

Troubleshooting 6. Testing and
refining
computational
artifacts
7. Communicating
about computing

Networks & the Internet
Identifier Standard and Descriptive Statement Subconcept Practice(s)

1.NI.NCO.01 Recognize that by connecting computing devices together they can
share information using a network (e.g. wired or wireless network).

Networking and interconnectivity of computing devices are essential in
today's society. Through wi-fi, bluetooth, or hard line ethernet
connections, the ability of information to be shared with an organized,
secure and reliable system, is an integrated range of platforms which
uses various software and hardware. Students should be able to
identify whether information is being sent to the program or device. (e.g.,
the teacher laptop is being connected to the LCD projector, or if how a
bluetooth speaker connection is active.)

Network
Communication &
Organization

7. Communicating
about computing

1.NI.C.01 Identify what authentication methods (passwords) are; explain why they
are not shared; and discuss what makes a password strong.
Independently, use passwords to access technological devices, apps,
etc.

Learning to protect one's device or information from unwanted use by
others is an essential first step in learning about cybersecurity. Students
are not required to use multiple strong passwords. They should
appropriately use and protect the passwords they are required to use.

Cybersecurity 7. Communicating
about computing

Data Analysis
Identifier Standard and Descriptive Statement Subconcept Practice(s)

1.DA.S.01 With guidance locate, open, modify, delete and save an existing file, use
appropriate file-naming conventions, and recognize that the file exists
within an organizational structure (drive, folder, file).

All information stored and processed by a computing device is referred
to as data. Data can be images, text documents, audio files, software
programs or apps, video files, etc. As students use software to complete
tasks on a computing device, they will be manipulating data. With
guidance, students will search for or retrieve files by name, or organize
files. This could include taking photos, opening, and deleting them,

Storage 4. Developing and
using abstractions

organizing files or photos into folders on a desktop or on an operating
system, and learning to name and save a file before exiting.

1.DA.C.01 With guidance, collect data and present it two different ways (chart or
graph).

The collection and use of data about the world around them is a routine
part of life and influences how people live. Students could collect data
on the weather, such as sunny days versus rainy days, the temperature
at the beginning of the school day and end of the school day, or the
inches of rain over the course of a storm. Students could count the
number of pieces of each color of candy in a bag of candy, such as
Skittles or M&Ms. Students could create surveys of things that interest
them, such as favorite foods, pets, or TV shows, and collect answers to
their surveys from their peers and others. The data collected could then
be organized into two visualizations, such as a bar graph or pie chart.

Collection 4. Developing and
using abstractions
7. Communicating
about computing

1.DA.CVT.01 With guidance, identify and interpret data from a chart or graph
(visualization) in order to make a prediction, with or without a computing
device.

Data can be used to make inferences or predictions about the world.
Students could analyze a graph or pie chart of the colors in a bag of
candy or the averages for colors in multiple bags of candy, identify the
patterns for which colors are most and least represented, and then
make a prediction as to which colors will have most and least in a new
bag of candy. Students could create and analyze charts or graphs in
spreadsheet applications, web based programs, or visually in digital
drawings to portray data collected. They could create and analyze
graphs of temperatures taken at the beginning of the school day and
end of the school day, identify the patterns of when temperatures rise
and fall, and predict if they think the temperature will rise or fall at a
particular time of the day, based on the pattern observed. The focus is
making predictions based on data.

Visualization &
Transformation

7. Communicating
about computing

1.DA.IM.01 Create a model of an object or process in order to identify patterns and
essential elements. (e.g. water table, butterfly life cycle, seasonal
weather patterns).

Inference and
Models

4. Developing and
using abstractions

Data can be represented in models to portray results and to assist in
identifying patterns in the world around us. This type of data is
represented in a more visual way outside of lines, bars, and charts.
This would include life cycles, weather maps, and processes such as
the engineering design process. Students will create models either
physically (paper, clay, etc.) or digitally using photos, text and shapes
with the intent of understanding patterns and essential steps and
information.

Algorithms and Programming
Identifier Standard and Descriptive Statement Subconcept Practice(s)

1.AP.A.01 With guidance, model daily processes and follow algorithms (sets of
step-by-step instructions) for complete tasks verbally, kinesthetically,
with robot devices, or a programing language.

Algorithmic thinking is the ability to define clear steps to solve a
problem. Composition is the combination of smaller tasks into more
complex tasks. With guidance, students should be able to create and
follow algorithms for making simple foods, brushing their teeth, getting
ready for school, participating in clean-up time or programming a robotic
device to follow a preset path.

Algorithms 4. Developing and
using abstractions

1.AP.V.01 With guidance, model the way that programs store and manipulate data
by using numbers or other symbols to represent information (e.g.
thumbs up/thumbs down for yes/no, use arrows when writing algorithms
to represent direction, or encode and decode words using numbers,
pictographs, or other symbols to represent letters or words).

Information in the real world can be represented in computer programs.
Students could use thumbs up/down as representations of yes/no, use
arrows when writing algorithms to represent direction, use emojis that
represent emotion, or use common icons and symbols to perform an
action (play is a triangle, save button, share button, etc.).

Variables 4. Developing and
using abstractions

1.AP.C.01 With guidance, independently, or collaboratively construct algorithms
(sets of step-by-step instructions) to accomplish tasks using a
programming language, robot device, or unplugged activity that includes
sequencing and repetition, to express ideas or address a problem.

Control 5. Creating
computational
artifacts

Programming is used as a tool to create products that reflect a wide
range of interests. Control structures specify the order in which
instructions are executed within a program. Emphasize the sequence of
events, such as left right, up, down. Get from one point to another on a
map. Have students develop the steps and have others follow those
steps. Search lessons for CS Unplugged, or CS fundamentals.

1.AP.M.01 With guidance, decompose (break down) the steps needed to solve a
problem into a precise sequence of instructions.

Decomposition is the act of breaking down tasks into simpler tasks.
Students could break down the steps needed to make a peanut butter
and jelly sandwich, to brush their teeth, to draw a shape, to move a
character across the screen, or to solve a level of a coding app.

Modularity 3. Recognizing
and defining
computational
problems

1.AP.PD.01 Independently or with guidance, create a grade-level appropriate artifact
to illustrate thoughts, ideas, or stories in a sequential (step-by-step)
manner (e.g. story map, storyboard, and sequential graphic organizer).

Creating a plan for what a program will do clarifies the steps that will be
needed to create a program and can be used to check if a program is
correct. Students could create a planning document, such as a story
map, a storyboard, or a sequential graphic organizer, to illustrate what
their program will do. Students at this stage may complete the planning
process by themselves, or with help from their teachers.

Program
Development

5. Creating
computational
artifacts
7. Communicating
about computing

1.AP.PD.02 Independently or with guidance give credit to ideas, creations and
solutions of others while writing and/or developing programs.

Using computers comes with a level of responsibility. Students should
credit artifacts that were created by others, such as pictures, music, and
code. Credit could be given orally, if presenting their work to the class,
or in writing or orally, if sharing work on a class blog or website. Proper
attribution at this stage does not require a formal citation, such as in a
bibliography or works cited document.

Program
Development

7. Communicating
about computing

1.AP.PD.03 With guidance, independently, or collaboratively construct, execute, and
debug (identify and fix) programs using a programming language and/or
unplugged activity that includes sequencing and repetition.

Program
Development

6. Testing and
refining

Algorithms or programs may not always work correctly. Students should
be able to use various strategies, such as changing the sequence of the
steps, following the algorithm in a step-by-step manner, or trial and error
to fix problems in algorithms and programs.

computational
artifacts

1.AP.PD.04 Use correct terminology (first, second, third) and explain the choices
made in the development or an algorithm to solve a simple problem.

At this stage, students should be able to talk or write about the goals
and expected outcomes of the programs they create and the choices
that they made when creating programs. This could be done using
coding journals, discussions with a teacher, class presentations, or
blogs.

Program
Development

7. Communicating
about computing

Impacts of Computing
Identifier Standard and Descriptive Statement Subconcept Practice(s)

1.IC.C.01 Identify how people use different types of technologies in their daily work
and personal lives.

Computing technology has changed the way people live and work. In
the past, if students wanted to read about a topic, they needed access
to a library to find a book about it. Today, students will be able to view
and read information on the Internet about a topic or they can download
e-books about it directly to a device. Such information may be available
in more than one language and could be read to a student, allowing for
great accessibility. In personal lives, they are encouraged to engage in
computing in a positive learning and encouraging manner.

Culture 7. Communicating
about computing

1.IC.SI.01 With guidance, identify appropriate and inappropriate behavior. Act
responsibly while participating in an online community and know how to
report concerns. (Digital Citizenship - review Digital Literacy, but focus
on Digital Etiquette and Rights and Responsibilities)

The practice of appropriate online behavior derives from the
identification of inappropriate behavior and the identification of what
makes someone a poor digital citizen or know what not to do in order to
be ethical online. Students practice online safety by only using sites
approved by an adult. Encourage students to tell an adult if they feel

Social
Interactions

2. Collaborating
around computing

uncomfortable or see something they feel is not appropriate. Make
students aware of the privacy of the digital resources being used in the
classroom and who sees what is being posted (social media - the
teacher posting class photos, students posting to online platforms such
as SeeSaw, data from testing sites such as iStation and Lexia.) This
includes knowing not to disclose personal information such as last
name, location, and passwords. Students practice giving positive
feedback on other student posts. Digital citizenship is described with
nine categories, however PreK-2 will focus on 4 of these: Digital Literacy
(the ability to use new technology quickly and appropriately), Digital
Etiquette (appropriate conduct), Digital Rights and Responsibilities
(knowing your rights to free speech and privacy, but handling it
responsibly online), and Digital Health and Wellness (caring for your
physical and psychological well-being online).

1.IC.H.01 Compare how people live and work before and after the implementation
or adoption of new computing technology.

As computers become interconnected in each aspect of society, more
powerful, and students become more reliant on them, students should
be able to identify a list of technologies the school and others have
improved in their daily lives. (e.g., ordering devices by voice, financial
institutions, household devices management, robotics, cars that drive
themselves, and Social Media sharing applications.)

History 7. Communicating
about computing

1.IC.SLE.01 Practice responsible digital citizenship (legal and ethical behaviors) in
the use of technology systems and software. Keep login information
private, and log off of devices appropriately.

People use computing technology in ways that can help or hurt
themselves or others. Harmful behaviors, such as sharing private
information such as last name, location, and school, as well as leaving
public devices logged in or sharing login information should be
recognized and avoided. Students should understand they should never
post as another person (blogs, SeeSaw, etc.) The concept of copyright
and using photos and text with permission should be recognized and
practiced with guidance.

Safety, Law, &
Ethics

2. Collaborating
around computing

1.IC.CP.01 Compare and contrast examples of how computing technology has
changed and improved the way people live, work, and interact.

Within the inevitable interwoven fabric of society's reliance and
innovative machines, students will required to have basic assumable
skills when entering the workforce. Students should be able to identify
what digital computing devices and languages are necessary to create a
modernized mode of everyday activities in the technological age. An
example would be for students to list how a bus driver can use GPS,
safety features, and indicators to provide safe travel to school.

Community
Partnerships

7. Communicating
about computing

Second Grade
Computing Systems
Identifier Standard and Descriptive Statement Subconcept Practice(s)

2.CS.D.01 Select and use a computing device to perform a variety of tasks for an
intended outcome.

People use computing devices to perform a variety of tasks accurately
and quickly. Students should be able to select the appropriate
app/program to use for tasks they are required to complete, then log off
or power down. For example, if students are asked to draw a picture,
they should be able to open and use a drawing app/program to
complete this task, or if they are asked to create a presentation, they
should be able to open and use presentation software. In addition, with
teacher guidance, students should compare and discuss preferences for
software with the same primary functionality. Students could compare
different web browsers or word processing, presentation, or drawing
programs.

Devices 7. Communicating
about computing

2.CS.HS.01 Model the use of components of a computing system, its basic
functions, peripherals, and storage features.(e.g. using the hard drive,
memory/storage, printers, scanners, wireless and cabled connections,
and cloud storage).

A computing system is composed of hardware and software. Hardware
consists of physical components. Software provides a computer a set of
instructions to follow. Students should be able to identify and use the
function of software and hardware such as memory/storage, printers,
flash drive, cloud storage, etc.

Hardware and
Software

7. Communicating
about computing

2.CS.HS.02 Self-select and use appropriate software/apps for an intended outcome.
(e.g., programs, browsers, websites, and applications).

Computer software and apps are programmed and installed on hard
drives on various devices utilized by every end user. Software provides
code for the programs to compute properly for the created operation.
Software apps and programs interact with one another to provide an
intended outcome or output. Students should be able to select an
application or program required for a desired activity. This could include,

Hardware and
Software

1. Fostering an
inclusive
computing culture

but not limited to, district purchased client-based reading or math
program software, apps for a specific learning methods Reading Eggs,
iMovie, Google Apps, Seesaw, or accessing a browser to navigate web
based programs.

2.CS.IO.01 Understand and use varying input/output skills.

 Input (keyboarding, mouse, touchscreen, voice, voice typing,
camera, robotics, interactive board)

 Output (monitor, screen, printer, 3D printer, robotics, audio)

Input devices are used to input data for the creation of various digital
products. Some input devices a person could use include voice typing,
touchpad, touchscreen, mouse, and keyboarding. (Keyboarding- use
fingers on home row and the spacebar with the thumb, shift key for
capital letters, understand that clicking the mouse or tapping the location
on the screen makes an insertion point in a document and how to use
the mouse to highlight (double-click) a word.

Input and Output 7. Communicating
about computing

2.CS.T.01 Using accurate terminology, identify and resolve simple hardware and
software problems and strategies for solving these problems.

Problems with computing systems have different causes. Students at
this level will start to understand those causes, and should be able to
communicate a problem with accurate terminology, and be able to find
solutions to that problem (e.g., when an app or program is not working
as expected, a device will not turn on, the sound does not work, etc.).
Ideally, students would be able to use simple troubleshooting strategies,
including turning a device off and on to reboot it, closing and reopening
an app, turning on speakers, or plugging in headphones. These are,
however, not specified in the standard, because these problems may
not occur.

Troubleshooting 6. Testing and
refining
computational
artifacts
7. Communicating
about computing

Networks & the Internet
Identifier Standard and Descriptive Statement Subconcept Practice(s)

2.NI.NCO.01 Use computing devices to share information and communicate with
others using a network.

Network
Communication &
Organization

7. Communicating
about computing

Networking and interconnectivity of computing devices are essential in
today's society. Through wi-fi, bluetooth, or hard line ethernet
connections, the ability of information to be shared with an organized,
secure and reliable system, is an integrated range of platforms which
uses various software and hardware. Students should be able to
understand and apply the process of sending information to the program
or device (e.g., the teacher laptop is being connected to the LCD
projector, or if the wi-fi or connection is active via Airplay, screenshare,
airdrop, bluetooth speaker or headphones, Google Classroom uploads).

2.NI.C.01 Demonstrate use of strong authentication methods to access and
protect devices and data. Understand the effects of retaining password
privacy.

Learning to protect one's device or information from unwanted use by
others is an essential first step in learning about cybersecurity. Students
are required to use strong passwords. They should appropriately use
and protect the passwords they are required to use.

Cybersecurity 7. Communicating
about computing

Data Analysis
Identifier Standard and Descriptive Statement Subconcept Practice(s)

2.DA.S.01 Manipulate existing files while use appropriate file-naming conventions.
With guidance, develop and modify an organizational structure by
creating, copying, moving, and deleting files and folders.

All information stored and processed by a computing device is referred
to as data. Data can be images, text documents, audio files, software
programs or apps, video files, etc. As students use software to complete
tasks on a computing device, they will be manipulating data. Students
will organize files or folders and use naming techniques (e.g., sorting
content area activities, grouping photos by project, moving files or
photos to the trash).

Storage 4. Developing and
using abstractions

2.DA.C.01 With guidance, collect and present the same data in various visual
formats.

The collection and use of data about the world around them is a routine
part of life and influences how people live. Students could collect data

Collection 4. Developing and
using abstractions
7. Communicating
about computing

on the weather, such as sunny days versus rainy days, the temperature
at the beginning of the school day and end of the school day, or the
inches of rain over the course of a storm. Students could count the
number of pieces of each color of candy in a bag of candy, such as
Skittles or M&Ms. Students could create surveys of things that interest
them, such as favorite foods, pets, or TV shows, and collect answers to
their surveys from their peers and others. The data collected could then
be organized into two or more visualizations, such as a bar graph, pie
chart, or pictograph.

2.DA.CVT.01 Collect data over time and organize it on a chart or graph in order to
make a prediction.

Data can be used to make inferences or predictions about the world.
Students could analyze a graph or pie chart of the colors in a bag of
candy or the averages for colors in multiple bags of candy, identify the
patterns for which colors are most and least represented, and then
make a prediction as to which colors will have most and least in a new
bag of candy. Students collect data over time, then create and analyze
charts or graphs in spreadsheet applications, web based programs, or
visually in digital drawings to portray data collected. They could create
and analyze graphs of temperatures taken at the beginning of the
school day and end of the school day, identify the patterns of when
temperatures rise and fall, and predict if they think the temperature will
rise or fall at a particular time of the day, based on the pattern observed.
The focus is on organizing data and making predictions based on data.

Visualization &
Transformation

7. Communicating
about computing

2.DA.IM.01 Use patterns in data to make inferences or predictions based on data
collected from users or simulations.

Data can be represented in models to portray results and to assist in
identifying patterns in the world around us. This includes students
collecting their own data or experiencing digital simulations. The intent is
to make predictions based on the data collected from participants or
from simulations.

Inference and
Models

4. Developing and
using abstractions

Algorithms and Programming
Identifier Standard and Descriptive Statement Subconcept Practice(s)

2.AP.A.01 Both independently and collaboratively construct and follow algorithms
that include sequencing and simple loops to accomplish a task verbally,
kinesthetically, with robot devices, or a programing language.

Algorithmic thinking is the ability to define clear steps to solve a
problem. Composition is the combination of smaller tasks into more
complex tasks. With guidance, students should be able to create and
follow algorithms for making simple foods, brushing their teeth, getting
ready for school, participating in clean-up time or programming a robotic
device to follow a preset path. Students should understand that loops
repeat the steps of a process.

Algorithms 4. Developing and
using abstractions

2.AP.V.01 Use and model the way a computer program stores, accesses, and
manipulates data that is represented as a variable.

Information in the real world can be represented in computer programs.
Students could use thumbs up/down as representations of yes/no, use
arrows when writing algorithms to represent direction, use emojis that
represent emotion, or use common icons and symbols to perform an
action (play is a triangle, save button, share button, etc.).

Variables 4. Developing and
using abstractions

2.AP.C.01 Independently and collaboratively create programs to accomplish tasks
using a programming language such as block based programming using
a robot device, or unplugged activity that includes simple loops,
sequencing, and repetition.

Programming is used as a tool to create products that reflect a wide
range of interests. Control structures specify the order in which
instructions are executed within a program. Use block based
programming, which is found in most robots used in elementary schools,
or online resources to learn coding skills.

Control 5. Creating
computational
artifacts

2.AP.M.01 Independently decompose (break down) a larger problem into smaller
subproblems and steps needed to solve those problems.

Decomposition is the act of breaking down tasks into simpler tasks.
Students could break down the steps needed to make a peanut butter

Modularity 3. Recognizing
and defining
computational
problems

and jelly sandwich, to brush their teeth, to draw a shape, to move a
character across the screen, or to solve a level of a coding app. When
coding, including the setting, designing a character, and choosing the
actions.

2.AP.PD.01 Independently create a grade-level appropriate artifact to illustrate
thoughts, ideas, or stories in a sequential (step-by- step) manner (e.g.,
story map, storyboard, and sequential graphic organizer).

Creating a plan for what a program will do clarifies the steps that will be
needed to create a program and can be used to check if a program is
correct. Students could create a planning document, such as a story
map, a storyboard, or a sequential graphic organizer, to illustrate what
their program will do. Students at this stage should be able to complete
the planning process by themselves.

Program
Development

5. Creating
computational
artifacts
7. Communicating
about computing

2.AP.PD.02 Give credit to ideas, creation (such as code, music, or pictures) and
solutions of others while writing and developing programs.

Using computers comes with a level of responsibility. Students should
credit artifacts that were created by others, such as pictures, music, and
code. Credit could be given orally, if presenting their work to the class,
or in writing or orally, if sharing work on a class blog or website. Proper
attribution at this stage does not require a formal citation, such as in a
bibliography or works cited document.

Program
Development

7. Communicating
about computing

2.AP.PD.03 Independently and collaboratively construct, execute, analyze and
debug (fix) an algorithm using a programming language and/or
unplugged activity that includes sequencing and simple loops.

Algorithms or programs may not always work correctly. Students should
be able to independently use various strategies, such as changing the
sequence of the steps, following the algorithm in a step-by-step manner,
or trial and error to fix problems in algorithms and programs.

Program
Development

6. Testing and
refining
computational
artifacts

2.AP.PD.04 Use correct terminology (debug, program input/output, code) to explain
the development of an algorithm to solve a problem in an unplugged
activity, hands on manipulatives, or a programming language.

Program
Development

7. Communicating
about computing

At this stage, students should be able to use correct terminology to
discuss or write about the goals and expected outcomes of the
programs they create and the choices that they made when creating
programs. This could be done using coding journals, discussions with a
teacher, class presentations, or blogs.

Impacts of Computing
Identifier Standard and Descriptive Statement Subconcept Practice(s)

2.IC.C.01 Recognize and describe how different technologies used daily in work
and at home are used to solve problems or make work and life easier.

Computing technology has changed the way people live and work. In
the past, if students wanted to read about a topic, they needed access
to a library to find a book about it. Today, students will be able to view
and read information on the Internet about a topic or they can download
e-books about it directly to a device. Such information may be available
in more than one language and could be read to a student, allowing for
great accessibility. In their personal lives, they should be able to utilize
those same technologies to complete life tasks (e.g., ordering food,
video-editing, game play, drones, sending emails to family and friends
for social interactions, and possibly checking the weather for the next
day).

Culture 7. Communicating
about computing

2.IC.SI.01 Aid in developing an appropriate code of conduct, explain and practice
grade-level appropriate behavior and responsibilities while participating
in an online community. Identify and report inappropriate behavior
(Digital Citizenship - review Digital Literacy and Digital Etiquette, but
focus on Rights and Responsibilities and Digital Health and Wellness).

The practice of appropriate online behavior derives from the
identification of inappropriate behavior and the identification of what
makes someone a poor digital citizen or know what not to do in order to
be ethical online. Students could share their work on blogs or in other
collaborative spaces online, taking care to avoid sharing information that
is inappropriate or that could personally identify them to others. Students
could provide feedback to others on their work in a kind and respectful
manner and could tell an adult if others are sharing things they should

Social
Interactions

2. Collaborating
around computing

not share or are treating others in an unkind or disrespectful manner on
online collaborative spaces. Digital citizenship is described with nine
categories, however PreK-2 will focus on 4 of these: Digital Literacy (the
ability to use new technology quickly and appropriately), Digital Etiquette
(appropriate conduct), Digital Rights and Responsibilities (knowing your
rights to free speech and privacy, but handling it responsibly online), and
Digital Health and Wellness (caring for your physical and psychological
well-being online).

2.IC.H.01 Recognize how technologies have changed the world, and explore how
the needs of society have impacted the changes in technology.

As computers become interconnected in each aspect of society, more
powerful, and students become more reliant on them, students should
be able to explain or utilize a list of technologies the school and others
have improved in their daily lives making connections to real-world
problems and solutions. (e.g., ordering devices by voice, financial
institutions, medical fields, household devices management, robotics,
cars that drive themselves, and Social Media sharing applications.)

History 7. Communicating
about computing

2.IC.SLE.01 Practice responsible digital citizenship in all technology use. Understand
digital data has intellectual property rights (belongs to others) and it
cannot be claimed as your own.

People use computing technology in ways that can help or hurt
themselves or others. Harmful behaviors, such as sharing private
information or sharing login information should be recognized and
avoided. Students should understand they should never post as
another person (blogs, SeeSaw, etc.) Students should be aware of the
concept of copyright and using photos and text with permission. This
could include images online, or asking a friend if it is OK to post their
picture before sharing it digitally.

Safety, Law, &
Ethics

2. Collaborating
around computing

2.IC.CP.01 Investigate how computer science has impacted your daily life and the
jobs in your community and the world around you.

Within the inevitable interwoven fabric of society's reliance and
innovative machines, students will required to have basic assumable
skills when entering the workforce. Students should be able to explain

Community
Partnerships

7. Communicating
about computing

how digital computing devices and languages are necessary to create a
modernized mode of everyday activities in the technological age. An
example would be for students to create examples and give possible
improvements of how a bus driver can use GPS, safety features, and
indicators to provide safe travel to school.

Third Grade
Computing Systems
Identifier Standard and Descriptive Statement Subconcept Practice(s)

3.CS.D.01 Identify how computing devices can be connected to other devices to
extend their capabilities.

Computing devices often depend on other devices or components. For
example, a robot depends on a physically attached light sensor to detect
changes in brightness, whereas the light sensor depends on the robot to
power. Keyboard input or a mouse click could cause an action to
happen or information to be displayed on a screen; this could only
happen because the computer has a processor to evaluate what is
happening externally and produce corresponding responses. At this
stage, students should be able to identify basic connections of a
minimum of two components (such as a tablet and charger cable
functioning together to charge the device or connect to the computer for
sharing data) while learning correct terminology for these devices and
components.

Devices 7. Communicating
about computing

3.CS.HS.01 Model how information flows through hardware and software to
accomplish tasks.

In order for a person to accomplish tasks with a computer, both
hardware and software are needed. At this stage, a model should only
include basic elements of a computer system, such as input, output,
processor, sensors, and storage. Students could draw a model on
paper or in a drawing program.

Hardware and
Software

4. Developing and
using abstractions

3.CS.IO.01 Demonstrate proper use of grade level appropriate input devices and
produce digital artifacts with a controlled audience.

Input devices are used to input data for the creation of various digital
products. Some input devices a person could use include voice typing,
touchpad, touchscreen, mouse, keyboarding (type letters and words at a
rate of 5-10 WPM while looking, identify home row, modifier,
punctuation, function keys), audio devices, camera. Digital artifacts
could be published but within a controlled setting like a closed class blog
or website. Examples of digital artifacts could include a slideshow,

Input and Output 7. Communicating
about computing

video, prints, 3D prints, audio, programs (robotics), web-based product
(controlled audience).

3.CS.T.01 Identify, using accurate terminology, simple hardware and software
problems and strategies for solving these problems.

Although computing systems may vary, common troubleshooting
strategies can be used on all of them. Students should be able to
identify solutions to problems such as the device not responding, no
power, no network, app crashing, no sound, or password entry not
working. Should an error occur, the goal would be that students would
identify various strategies, such as rebooting the device, checking for
power, checking network availability, closing and reopening applications,
making sure the volume is turned up and the headphones are plugged
in, and making sure the caps lock key is not on, to solve these
problems, when possible. It also becomes crucial for students to start
using accurate terminology in describing and discussing their problem
with a peer or adult.

Troubleshooting 6. Testing and
refining
computational
artifacts

Networks & the Internet
Identifier Standard and Descriptive Statement Subconcept Practice(s)

3.NI.NCO.01 Model how a device on a network sends and receives information.

Information is sent and received over physical or wireless paths. It is
broken down into smaller pieces called packets, which are sent
independently and reassembled at the destination. Students should
demonstrate their understanding of this flow of information, e.g. drawing
a model of the way packets are transmitted, programming an animation
to show how packets are transmitted, or demonstrating through an
unplugged activity which has them act it out in some way.

Network
Communication &
Organization

4. Developing and
using abstractions

3.NI.C.01 Identify problems that relate to inappropriate use of computing devices
and networks.

Just as we protect our personal property offline, we also need to protect
our devices and the information stored on them. Information can be
protected using various security measures. These measures can be
physical and/or digital. Students could discuss or use a journaling or

Cybersecurity 3. Recognizing
and Defining
Computational
Problems

blogging activity to explain, orally or in writing, about topics that relate to
personal cybersecurity issues. Discussion could be based on topics that
are applicable to students, such as backing up data to guard against
loss, how to create strong passwords and the importance of not sharing
passwords. or why we should install and keep anti-virus software
updated to protect data and systems..

Data Analysis
Identifier Standard and Descriptive Statement Subconcept Practice(s)

3.DA.S.01 Compare and contrast the formats and storage requirements for
different types of information (e.g., music, video, images, and text).

Different Software tools used to access data may store the data
differently. The type of data being stored and the level of detail
represented by that data affect the storage requirements (file size,
availability, and available memory). Music, images, video, and text
require different amounts of storage. Video will often require more
storage than music or images alone because video combines both.

Storage 7. Communicating
about computing

3.DA.C.01 Gather relevant and reliable data to solve a problem or answer a
question.

People select digital tools for the collection of data based on what is
being observed and how the data will be used (e.g., a thermometer is
used to measure temperature and GPS sensor is used to track
locations). There exists a wide array of digital data collection tools, and
only some are appropriate for certain types of data. Tools are chosen
based upon the type of measurement they use as well the type of data
people wish to observe.

Collection 5. Creating
Computational
Artifacts

3.DA.CVT.01 Create a simple data visualization based on data collected by or
provided to student.

Raw data has little meaning on its own. Data is often sorted or grouped
to provide additional clarity. Organizing data can make interpreting and
communicating it to others easier. Data points can be clustered by a
number of commonalities. The same data could be manipulated in
different ways to emphasize particular aspects or parts of the data set

Visualization &
Transformation

7. Communicating
about computing

(e.g., graphs, charts and infographics). For example, a data set of sports
teams could be sorted by wins, points scored, or points allowed, and a
data set of weather information could be sorted by high temperatures,
low temperatures, or precipitation.

3.DA.IM.01 Utilize data to make predictions and discuss whether there is adequate
data to make reliable predictions.

The accuracy of data analysis is related to how realistically data is
represented. Inferences or predictions based on data are less likely to
be accurate if the data is not sufficient or if the data is incorrect in some
way. Students should be able to refer to data when communicating an
idea. For example, in order to explore the relationship between speed,
time, and distance, students could operate a robot at uniform speed,
and at increasing time intervals to predict how far the robot travels at
that speed. In order to make an accurate prediction, one or two attempts
of differing times would not be enough. The robot may also collect
temperature data from a sensor, but that data would not be relevant for
the task. Students must also make accurate measurements of the
distance the robot travels in order to develop a valid prediction. Students
could record the temperature at noon each day as a basis to show that
temperatures are higher in certain months of the year. If temperatures
are not recorded on non-school days or are recorded incorrectly or at
different times of the day, the data would be incomplete and the ideas
being communicated could be inaccurate. Students may also record the
day of the week on which the data was collected, but this would have no
relevance to whether temperatures are higher or lower. In order to have
sufficient and accurate data on which to communicate the idea, students
might want to use data provided by a governmental weather agency.

Inference and
Models

7. Communicating
about computing

Algorithms and Programming
Identifier Standard and Descriptive Statement Subconcept Practice(s)

3.AP.A.01 Compare multiple algorithms for the same task.

Different algorithms can achieve the same result; however, sometimes
one algorithm might be more suited for a particular situation. Students
should be able to look at different ways to solve the problem or complete

Algorithms 3. Recognizing
and Defining
Computational
Problems

the same task and recognize the differences between the solutions. For
example, students could create multiple algorithms that describe how to
get ready for school or other tasks like baking cookies.

6. Testing and
Refining
Computational
Artifacts

3.AP.V.01 Utilize simple programs that use variables to store and modify grade
level appropriate data.

Variables are used to store and modify data. At this level, understanding
how to use variables is sufficient. For example, students may use
mathematical operations to add to the score of a game or subtract from
the number of lives available in a game. The use of a variable is a
countdown timer is another example.

Variables 5. Creating
computational
artifacts

3.AP.C.01 Create simple programs using a programming language that utilize
sequencing, repetition, conditionals, and variables to solve a problem or
express ideas independently.

Control structures specify the order (sequence) in which instructions are
executed within a program and can be combined to support the creation
of more complex programs. Conditionals allow for the execution of a
portion of code in a program when a certain condition is true. For
example, students could write a math game that asks for multiplication
fact questions and then uses a conditional to check whether or not the
answer that was entered is correct. Loops allow for the repetition of a
sequence of code multiple times. For example, in a program that
produces an animation about a famous historical character, students
could use a loop to have the character walk across the screen as they
introduce themselves.

Control 5. Creating
computational
artifacts

3.AP.M.01 Decompose (break down) the steps needed to solve a problem into a
precise sequence of instructions.

Students should be able to take a general solution to a problem and
break down steps that are too generic. For example, baking a cake
could be described in various levels of detail. Many steps, like adding
ingredients to a bowl, can be broken down into multiple steps instead of
just adding all ingredients at once.

Modularity 3. Recognizing
and defining
computational
problems

3.AP.M.02 With grade appropriate complexity, modify, remix, or incorporate
portions of an existing program into one's own work, to develop
something new or add more advanced features.

Programs can be broken down into smaller parts, which can be
incorporated into new or existing programs. For example, students could
modify prewritten code from a single-player game to create a two-player
game with slightly different rules, remix and add another scene to an
animated story, use code to make a ball bounce from another program
in a new basketball game, or modify an image created by another
student.

Modularity 3. Recognizing
and defining
computational
problems
5. Creating
computational
artifacts

3.AP.PD.01 Create a plan using an iterative process to plan the development of a
program while solving simple problems (e.g., storyboard, flowchart,
pseudo-code, story map).

Students should document the plan development as, for example, a
storyboard, flowchart, pseudocode, or story map. Students put
commands in order (ties into literacy and expository text) (e.g. using
block code to drag commands into the correct order to complete the
programming task.

Program
Development

1. Fostering an
Inclusive
Computing Culture
5. Creating
computational
artifacts

3.AP.PD.02 Use proper citations and document when ideas are borrowed and
changed for their own use (e.g., using pictures created by others, using
music created by others, remixing programming projects).

Students should identify instances of remixing, when ideas are borrowed
and iterated upon, and credit the original creator. Students should also
consider common licenses that place limitations or restrictions on the
use of computational artifacts, such as images and music downloaded
from the Internet. At this stage, attribution should be written in the format
required by the teacher. (e.g. as students begin using resources created
by others a first step in writing citations is collecting the website link from
where you found your artifact.

Program
Development

5. Creating
computational
artifacts
7. Communicating
about computing

3.AP.PD.03 Analyze and debug (identify/fix errors) a program that includes
sequencing, repetition and variables in a programming language.

Program
Development

1. Fostering an
Inclusive
Computing Culture

As students develop programs they should continuously test those
programs to see that they do what was expected and fix (debug), any
errors. Students should also be able to assist others in debugging their
programs.

2. Collaborating
Around Computing
6. Testing and
Refining
Computational
Artifacts

3.AP.PD.04 Communicate and explain your program development using comments,
presentations and demonstrations.

People communicate about their code to help others understand and
use their programs. Another purpose of communicating one's design
choices is to show an understanding of one's work. These explanations
could be in-line code comments or as part of a summative presentation,
such as a code walk-through or coding journal.

Program
Development

2. Collaborating
Around Computing
7. Communicating
about computing

Impacts of Computing
Identifier Standard and Descriptive Statement Subconcept Practice(s)

3.IC.C.01 Identify possible problems and how computing devices have built in
features for increasing accessibility to all users.

Anticipating the needs and wants of diverse end users requires students
to purposefully consider potential perspectives of users with different
backgrounds, ability levels, points of view, and disabilities. For example,
students may consider using both speech and text to convey information
in a game. They may also wish to vary the types of programs they
create, knowing that not everyone shares their own tastes. When
creating something for others, students give options (e.g. speech to text
or type, differentiate tasks, adjusting hardware needed/give options
because others might not all have the same tools.

Culture 4. Developing and
Using Abstractions
5. Creating
Computational
Artifacts
6. Testing and
Refining
Computational
Artifacts

3.IC.SI.01 Develop a code of conduct, explain, and practice grade-level
appropriate behavior and responsibilities while participating in an online
community. Identify and report inappropriate behavior. (Digital
Citizenship - review of all nine components, but focused on Digital
Communication and Digital Etiquette.)

Social
Interactions

1. Fostering an
Inclusive
Computing Culture
7. Communicating
about Computing

The practice of appropriate online behavior derives from the
identification of inappropriate behavior and the identification of what
makes someone a poor digital citizen or know what not to do in order to
be ethical online. Digital citizenship is described with nine categories:
digital access (awareness of materials gained online and being mindful
of who does/does not have access), digital commerce (awareness of
illegal and legal exchanges online e.g. illegal downloading), digital
communication (communicating and collaborating properly online),
digital literacy (the ability to use new technology quickly and
appropriately), digital etiquette (appropriate conduct), digital law (ethical
use of technology e.g. hacking information, downloading illegally,
plagiarizing, creating viruses, sending spam, or stealing someone's
identify), digital rights and responsibilities (knowing your rights to free
speech and privacy, but handling it responsibly online) digital health and
wellness (caring for your physical and psychological wellbeing online),
digital security (proactive about protecting your devices and identity
online e.g., data backup, use of a surge protector, virus protection).

3.IC.S.02 Identify how computational products may be, or have been, improved to
incorporate diverse perspectives.

Computing provides the possibility for collaboration and sharing of ideas
and allows the benefit of diverse perspectives. For example, students
could seek feedback from other groups in their class or students at
another grade level. (e.g., Students could begin by evaluating lesson
materials saying, "This assignment would be better if..." You color
coded, made this assignment in a table, made it accessible on my
mom's phone.")

Social
Interactions

1. Fostering an
Inclusive
Computing Culture
2. Collaborating
Around Computing

3.IC.H.01 Identify computing technologies that have changed the world, and
express how those technologies influence, and are influenced by,
society.

Students, with guidance from their teacher, should discuss topics that
relate to the history of technology and the changes in the world due to
technology. Topics could be based on current news content, such as
robotics, wireless Internet, mobile computing devices, GPS systems,
wearable computing, or how social media has influenced social and

History 1. Fostering an
Inclusive
Computing Culture
7. Communicating
about Computing

political changes. (e.g. Google Glasses, Robotics, 3D printers, smart
phones, Chromebooks, Precision Ag (lettucebot, GPS tractors, boom
cameras) drones, Smart assistants, Students and teacher create a
collaborative list of current technology and discuss the impacts those
devices have on our lives. Also, discuss why devices are
popular/unpopular and why, which is how that device is viewed by
society.

3.IC.SLE.01 Identify types of digital data that may have intellectual property rights
that prevent copying or require attribution.

Students should consider the licenses on computational artifacts that
they wish to use. For example, the license on a downloaded image on
audio file may have restrictions that prohibit modification, require
attribution, or prohibit use entirely. Students should have a basic
knowledge of items that are restricted. (e.g., online books, music, free
music archive, images, creative commons).

Safety, Law, &
Ethics

5. Creating
Computational
Artifacts

3.IC.CP.01 Design a visual product depicting the connections between computer
science and other fields.

Explaining the reason why of any computer task will lead students to
understand how other professionals within their community might use
similar tasks in their occupations. Making correlations and a purpose for
tasks makes CS relevant to their lives as they age. Students make a
direct correlation to a local business.

Community
Partnerships

1. Fostering an
Inclusive
Computing Culture
2. Collaborating
Around Computing
7. Communicating
about computing

Fourth Grade
Computing Systems
Identifier Standard and Descriptive Statement Subconcept Practice(s)

4.CS.D.01 Identify and explain how computing devices can be connected to other
devices to extend their capabilities.

Computing devices often depend on other devices or components. For
example, a robot depends on a physically attached light sensor to detect
changes in brightness, whereas the light sensor depends on the robot to
power. Keyboard input or a mouse click could cause an action to
happen or information to be displayed on a screen; this could only
happen because the computer has a processor to evaluate what is
happening externally and produce corresponding responses. Students
should be able to identify connections of a minimum of three
components (such as a computer charger connected to a computer for
power and then connecting to wifi through an access point within the
vicinity) and explain how devices and components interact using correct
terminology.

Devices 7. Communicating
about computing

4.CS.HS.01 Explain how information is translated, transmitted, and processed
between hardware and software in order to accomplish tasks.

In order for a person to accomplish tasks with a computer, both
hardware and software are needed. At this stage, a model should only
include basic elements of a computer system, such as input, output,
processor, sensors, and storage. Students could draw a model in a
drawing program, program an animation to demonstrate it, or
demonstrate it by acting this out in some way.

Hardware and
Software

4. Developing and
using abstractions

4.CS.IO.01 Demonstrate proper use of grade level appropriate input devices and
produce digital artifacts with a controlled audience.

Input devices are used to input data for the creation of various digital
products. Some input devices a person could use include voice typing,
touchpad, touchscreen, mouse, keyboarding (type letters and words at a
rate of 10-15 WPM while increasing the proportion of time looking away
from the keyboard, consistent use of home row, modifier, punctuation,
function keys), audio devices, camera. Digital artifacts could be

Input and Output 7. Communicating
about computing

published but within a controlled setting like a closed class blog or
website. Examples of digital artifacts could include a slideshow, video,
prints, 3D prints, audio, programs (robotics), web-based product
(controlled audience).

4.CS.T.01 Identify, using accurate terminology, simple hardware and software
problems that may occur during everyday use, discuss problems with
peers and adults, and apply strategies for solving these problems.

Although computing systems may vary, common troubleshooting
strategies can be used on all of them. Students should be able to
identify solutions to problems such as the device not responding, no
power, no network, app crashing, no sound, or password entry not
working. Should an errors occur, the goal would be that students would
not only identify but also use various strategies, such as rebooting the
device, checking for power, checking network availability, closing and
reopening applications, making sure the volume is turned up and the
headphones are plugged in, and making sure the caps lock key is not
on, to solve these problems, when possible. Students would continue
using and build on accurate terminology in describing and discussing
their problem with a peer or adult.

Troubleshooting 6. Testing and
refining
computational
artifacts

Networks & the Internet
Identifier Standard and Descriptive Statement Subconcept Practice(s)

4.NI.NCO.01 Explain how information is sent and received across physical or wireless
paths.

Information is sent and received over physical or wireless paths. It is
broken down into smaller pieces called packets, which are sent
independently and reassembled at the destination. Students should
demonstrate their understanding of this flow of information, e.g., drawing
a model of the way packets are transmitted, programming an animation
to show how packets are transmitted, or demonstrating through an
unplugged activity which has them act it out in some way.

Network
Communication &
Organization

4. Developing and
using abstractions

4.NI.C.01 Identify and explain issues related to responsible use of technology and
information, and describe personal consequences of inappropriate use.

Cybersecurity 3. Recognizing
and Defining

Just as we protect our personal property offline, we also need to protect
our devices and the information stored on them. Information can be
protected using various security measures. These measures can be
physical and/or digital. Students could discuss or use a journaling or
blogging activity to explain, orally or in writing, about topics that relate to
personal cybersecurity issues. Discussion topics could be based on
current events related to cybersecurity or topics that are applicable to
students, such as backing up data to guard against loss, how to create
strong passwords and the importance of not sharing passwords. or why
we should install and keep anti-virus software updated to protect data
and systems.

Computational
Problems

Data Analysis
Identifier Standard and Descriptive Statement Subconcept Practice(s)

4.DA.S.01 Classify different storage locations (physical, shared, or cloud) based on
the type of file, storage requirements, and sharing requirements.

Different Software tools used to access data may store the data
differently. The type of data being stored and the level of detail
represented by that data affect the storage requirements (file size,
availability, and available memory). Music, images, video, and text
require different amounts of storage. Video will often require more
storage than music or images alone because video combines both.

Storage 7. Communicating
about computing

4.DA.C.01 Gather and manipulate relevant and reliable data using the appropriate
digital tool.

People select digital tools for the collection of data based on what is
being observed and how the data will be used (e.g., thermometer is
used to measure temperature and GPS sensor is used to track
locations). There is a wide array of digital data collection tools, only
some are appropriate for certain types of data. Tools are chosen based
upon the type of measurement they use as well the type of data people
wish to observe.

Collection 5. Creating
Computational
Artifacts

4.DA.CVT.01 Organize and present collected data visually to highlight comparisons.

Visualization &
Transformation

7. Communicating
about computing

Raw data has little meaning on its own. Data is often sorted or grouped
to provide additional clarity. Organizing data can make interpreting and
communicating it to others easier. Data points can be clustered by a
number of commonalities. The same data could be manipulated in
different ways to emphasize particular aspects or parts of the data set
(e.g., graphs, charts and infographics). For example, a data set of sports
teams could be sorted by wins, points scored, or points allowed, and a
data set of weather information could be sorted by high temperatures,
low temperatures, or precipitation.

4.DA.IM.01 Determine how the accuracy of conclusions are influenced by the
amount and relevance of the data collected.

The accuracy of data analysis is related to how realistically data is
represented. Inferences or predictions based on data are less likely to
be accurate if the data is not sufficient or if the data is incorrect in some
way. Students should be able to refer to data when communicating an
idea. For example, in order to explore the relationship between speed,
time, and distance, students could operate a robot at uniform speed,
and at increasing time intervals to predict how far the robot travels at
that speed. In order to make an accurate prediction, one or two attempts
of differing times would not be enough. The robot may also collect
temperature data from a sensor, but that data would not be relevant for
the task. Students must also make accurate measurements of the
distance the robot travels in order to develop a valid prediction. Students
could record the temperature at noon each day as a basis to show that
temperatures are higher in certain months of the year. If temperatures
are not recorded on non-school days or are recorded incorrectly or at
different times of the day, the data would be incomplete and the ideas
being communicated could be inaccurate. Students may also record the
day of the week on which the data was collected, but this would have no
relevance to whether temperatures are higher or lower. In order to have
sufficient and accurate data on which to communicate the idea, students
might want to use data provided by a governmental weather agency.

Inference and
Models

7. Communicating
about computing

Algorithms and Programming
Identifier Standard and Descriptive Statement Subconcept Practice(s)

4.AP.A.01 Analyze and refine multiple algorithms for the same task.

Different algorithms can achieve the same result; however, sometimes
one algorithm might be more suited for a particular situation. Students
should be able to look at different ways to solve a problem or complete a
task and decide which would be the best solution. For example,
students could write different algorithms to draw a regular polygon and
determine which algorithm would be the easiest to modify or repurpose
to draw a different polygon.

Algorithms 3. Recognizing
and Defining
Computational
Problems
6. Testing and
Refining
Computational
Artifacts

4.AP.V.01 Utilize, create, and modify programs that use variables, with grade level
appropriate data.

Variables are used to store and modify data. At this level, understanding
how to use variables in a variety of ways is sufficient. For example,
students may use mathematical operations to add to the score of a
game or subtract from the number of lives available in a game. The use
of a variable in a countdown timer is another example.

Variables 5. Creating
computational
artifacts

4.AP.C.01 Create programs using a programming language that utilize sequencing,
repetition, conditionals and variables to solve a problem or express
ideas both independently and collaboratively.

Control structures specify the order (sequence) in which instructions are
executed within a program and can be combined to support the creation
of more complex programs. Conditionals allow for the execution of a
portion of code in a program when a certain condition is true. For
example, students could write a math game that asks for multiplication
fact questions and then uses a conditional to check whether or not the
answer that was entered is correct. Loops allow for the repetition of a
sequence of code multiple times. For example, in a program that
produces an animation about a famous historical character, students
could use a loop to have the character walk across the screen as they
introduce themselves. Students should be able to complete these tasks
collaboratively with other students.

Control 5. Creating
computational
artifacts

4.AP.M.01 Decompose (break down) large problems into smaller, manageable
subproblems. Then form algorithms to solve each subproblem.

Decomposition is the act of breaking down tasks into simpler tasks. For
example, students could create an animation by separating a story into
different scenes. For each scene, they would select a background, place
characters, and describe actions.

Modularity 3. Recognizing
and defining
computational
problems

4.AP.M.02 With grade appropriate complexity, modify, remix, or incorporate
portions of an existing program into one's own work, to develop
something new or add more advanced features.

Programs can be broken down into smaller parts, which can be
incorporated into new or existing programs. For example, students could
modify prewritten code from a single-player game to create a two-player
game with slightly different rules, remix and add another scene to an
animated story, use code to make a ball bounce from another program
in a new basketball game, or modify an image created by another
student.

Modularity 3. Recognizing
and defining
computational
problems
5. Creating
computational
artifacts

4.AP.PD.01 Create a plan using an iterative process to plan the development of a
program that includes user preferences while solving simple problems.

Planning is an important part of the iterative process of program
development. Students outline features, time and resource constraints,
and user expectations. Students should document the plan as, for
example, a storyboard, flowchart, pseudocode, or story map.

Program
Development

1. Fostering an
Inclusive
Computing Culture
5. Creating
computational
artifacts

4.AP.PD.02 Use proper citations and document when ideas are borrowed and
changed for their own use (e.g., using pictures created by others, using
music created by others, remixing programming projects).

Students should identify instances of remixing, when ideas are borrowed
and iterated upon, and credit the original creator. Students should also
consider common licenses that place limitations or restrictions on the
use of computational artifacts, such as images and music downloaded
from the Internet. At this stage, attribution should be written in the format
required by the teacher and should always be included on any programs
shared online. Students work through how to create citations for various

Program
Development

5. Creating
computational
artifacts
7. Communicating
about computing

borrowed resources. both writing citations manually then introducing
websites that assist in citation creation.

4.AP.PD.03 Analyze, debug (identify/fix errors), and create a program that includes
sequencing, repetition and variables in a programming language.

As students develop programs they should continuously test those
programs to see that they do what was expected and fix (debug), any
errors. Students should also be able to successfully find simple errors in
programs created by others.

Program
Development

1. Fostering an
Inclusive
Computing Culture
2. Collaborating
Around Computing
6. Testing and
Refining
Computational
Artifacts

4.AP.PD.04 Communicate and explain your program development using comments,
presentations and demonstrations.

People communicate about their code to help others understand and
use their programs. Another purpose of communicating one's design
choices is to show an understanding of one's work. These explanations
could manifest themselves as in-line code comments for collaborators
and assessors, or as part of a summative presentation, such as a code
walk-through or coding journal.

Program
Development

2. Collaborating
Around Computing
7. Communicating
about computing

Impacts of Computing
Identifier Standard and Descriptive Statement Subconcept Practice(s)

4.IC.C.01 Brainstorm problems and ways to improve computing devices to
increase accessibility to all users.

Anticipating the needs and wants of diverse end users requires students
to purposefully consider potential perspectives of users with different
backgrounds, ability levels, points of view, and disabilities. For example,
students may consider using both speech and text to convey information
in a game. They may also wish to vary the types of programs they
create, knowing that not everyone shares their own tastes. When
creating something for others, students give options (e.g. speech to text
or type, differentiate tasks, adjusting hardware needed/give options
because others might not all have the same tools.

Culture 4. Developing and
Using Abstractions
5. Creating
Computational
Artifacts
6. Testing and
Refining
Computational
Artifacts

4.IC.SI.01 Develop a code of conduct, explain, and practice grade-level
appropriate behavior and responsibilities while participating in an online
community. Identify and report inappropriate behavior. (Digital
Citizenship - review of all nine components, but focused on Digital
Access).

The practice of appropriate online behavior derives from the
identification of inappropriate behavior and the identification of what
makes someone a poor digital citizen or know what not to do in order to
be ethical online. Digital citizenship is described with nine categories:
digital access (awareness of materials gained online and being mindful
of who does/does not have access), digital commerce (awareness of
illegal and legal exchanges online e.g. illegal downloading), digital
communication (communicating and collaborating properly online),
digital literacy (the ability to use new technology quickly and
appropriately), digital etiquette (appropriate conduct), digital law (ethical
use of technology e.g. hacking information, downloading illegally,
plagiarizing, creating viruses, sending spam, or stealing someone's
identify), digital rights and responsibilities (knowing your rights to free
speech and privacy, but handling it responsibly online) digital health and
wellness (caring for your physical and psychological wellbeing online),
digital security (proactive about protecting your devices and identity
online e.g. data backup, use of a surge protector, virus protection).

Social
Interactions

1. Fostering an
Inclusive
Computing Culture
7. Communicating
about Computing

4.IC.SI.02 As a team, consider each other’s’ perspectives on improving a
computational product.

Computing provides the possibility for collaboration and sharing of ideas
and allows the benefit of diverse perspectives. For example, students
could seek feedback from other groups in their class or students at
another grade level.

Social
Interactions

1. Fostering an
Inclusive
Computing Culture
2. Collaborating
Around Computing

4.IC.H.01 Identify and give examples of computing technologies that have
changed the world, and express how those technologies influence, and
are influenced by, society.

Students, with guidance from their teacher, should discuss topics that
relate to the history of technology and the changes in the world due to

History 1. Fostering an
Inclusive
Computing Culture
7. Communicating
about Computing

technology. Topics could be based on current news content, such as
robotics, wireless Internet, mobile computing devices, GPS systems,
wearable computing, or how social media has influenced social and
political changes. (e.g. a collaborative table with headings - Tech,
Reason for the Tech, and Society Changes with this Tech.) This could
be a collaborative activity where everyone adds their own ideas.

4.IC.SLE.01 Discuss the social impact of violating intellectual property rights.

Students should consider the licenses on computational artifacts that
they wish to use. For example, the license on a downloaded image or
audio file may have restrictions that prohibit modification, require
attribution, or prohibit use entirely. Students should identify an artifact
labeled not for reuse and explain why they should not use it and what
might happen if they violated those restrictions.

Safety, Law, &
Ethics

5. Creating
Computational
Artifacts

4.IC.CP.01 Design a visual product depicting the connections between computer
science and other fields.

Explaining the reason why of any computer task will lead students to
understand how other professionals within their community might use
similar tasks in their occupations. Making correlations and a purpose for
tasks makes CS relevant to their lives as they age. Students make a
direct correlation to a local business.

Community
Partnerships

1. Fostering an
Inclusive
Computing Culture
2. Collaborating
Around Computing
7. Communicating
about computing

Fifth Grade
Computing Systems
Identifier Standard and Descriptive Statement Subconcept Practice(s)

5.CS.D.01 Model and communicate how computing devices can be connected to
other devices to extend their capabilities.

Students should have enough basic knowledge to identify examples of
computing devices and components working together. To advance this
knowledge, students would now communicate their understanding
through a variety of means such as the creation of a slideshow, video,
drawing, animation or other digital product depicting new examples of
how computing devices can be connected to other devices to extend
their capabilities. The intent of the completed student products would be
to use them during instruction of the device standard with younger grade
levels.

Devices 7. Communicating
about computing

5.CS.HS.01 Illustrate how information is translated into binary numbers between
software and hardware.

Students should understand that everything on a computer can be
reduced to1's and 0's (binary). That is, information they use and create
as part of their programs, on the internet, and other devices are not
stored on hardware in their apparent form, but as a series of binary
codes. Students should be able to understand basic binary
representation and how it can be used to store information. This can
start with simple representation of on/off with lights (1/0 for current/no
current) and gradually grow into how you can use a series of binary
numbers to represent different kinds of information like text or numbers.

Hardware and
Software

4. Developing and
using abstractions

5.CS.IO.01 Demonstrate proper use of grade level appropriate input devices and
produce digital artifacts selective publication based on
audience/purpose.

Input devices are used to input data for the creation of various digital
products. Some input devices a person could use include voice typing,
touchpad, touchscreen, mouse, keyboarding (type letters and words at a
rate of 15-20 WPM with 85% accuracy while looking away from the
keyboard, consistent use of home row, modifier, punctuation, function

Input and Output 7. Communicating
about computing

keys), audio devices, camera. Digital artifacts would be published for
the purpose of sharing with the appropriate audience based on the
purpose of the artifact. Examples of digital artifacts could include a
slideshow, video, prints, 3D prints, audio, programs (robotics), web-
based product.

5.CS.T.01 Using accurate terminology, identify simple hardware and software
problems that may occur during everyday use.

Although computing systems may vary, common troubleshooting
strategies can be used on all of them. Students should be able to
identify solutions to problems such as the device not responding, no
power, no network, app crashing, no sound, or password entry not
working. Should an errors occur, the goal would be that students would
not only identify but also use various strategies, such as rebooting the
device, checking for power, checking network availability, closing and
reopening applications, making sure the volume is turned up and the
headphones are plugged in, and making sure the caps lock key is not
on, to solve these problems, when possible. Students would continue
using and build on accurate terminology in discussing their problem with
a peer or adult.

Troubleshooting 6. Testing and
refining
computational
artifacts

Networks & the Internet
Identifier Standard and Descriptive Statement Subconcept Practice(s)

5.NI.NCO.01 Model how information is broken down into smaller pieces and
transmitted through multiple devices over networks and the internet, and
how these pieces are assembled at the destination.

Information is sent and received over physical or wireless paths. It is
broken down into smaller pieces called packets, which are sent
independently and reassembled at the destination. Students should
demonstrate their understanding of this flow of information, e.g., drawing
a model of the way packets are transmitted, programming an animation
to show how packets are transmitted, or demonstrating through an
unplugged activity which has them act it out in some way.

Network
Communication &
Organization

4. Developing and
using abstractions

5.NI.C.01 Discuss real-world cybersecurity problems and identify strategies for
how personal information can be protected.

Cybersecurity 3. Recognizing
and Defining

Just as we protect our personal property offline, we also need to protect
our devices and the information stored on them. Information can be
protected using various security measures. These measures can be
physical and/or digital. Students could discuss or use a journaling or
blogging activity to explain, orally or in writing, about topics that relate to
personal cybersecurity issues. Discussion topics could be based on
current events related to cybersecurity or topics that are applicable to
students, such as backing up data to guard against loss, how to create
strong passwords and the importance of not sharing passwords, or why
we should install and keep anti-virus software updated to protect data
and systems..

Computational
Problems

Data Analysis
Identifier Standard and Descriptive Statement Subconcept Practice(s)

5.DA.S.01 Evaluate trade-offs of file types, storage requirements, and sharing
requirements, including comparisons of availability and quality.

Different software tools used to access data may store the data
differently. The type of data being stored and the level of detail
represented by that data affect the storage requirements. Music,
images, video, and text require different amounts of storage. Video will
often require more storage than music or images alone because video
combines both. For example, two pictures of the same object can
require different amounts of storage based upon their resolution.
Different software tools used to access and store data may add
additional data about the data (metadata), which results in different
storage requirements.

Storage 7. Communicating
about computing

5.DA.C.01 Select the appropriate tool to collect relevant and reliable data that
solves a problem.

People select digital tools for the collection of data based on what is
being observed and how the data will be used (e.g., thermometer is
used to measure temperature and GPS sensor is used to track
locations). There is a wide array of digital data collection tools, only
some are appropriate for certain types of data. Tools are chosen based

Collection 5. Creating
Computational
Artifacts

upon the type of measurement they use as well the type of data people
wish to observe.

5.DA.CVT.01 Organize and present collected data to highlight comparisons and
support a claim.

Raw data has little meaning on its own. Data is often sorted or grouped
to provide additional clarity. Organizing data can make interpreting and
communicating it to others easier. Data points can be clustered by a
number of commonalities. The same data could be manipulated in
different ways to emphasize particular aspects or parts of the data set.
For example, a data set of sports teams could be sorted by wins, points
scored, or points allowed, and a data set of weather information could
be sorted by high temperatures, low temperatures, or precipitation.

Visualization &
Transformation

7. Communicating
about computing

5.DA.IM.01 Use data to discover or propose cause and effect relationships, predict
outcomes, or communicate an idea.

The accuracy of data analysis is related to how realistically data is
represented. Inferences or predictions based on data are less likely to
be accurate if the data is not sufficient or if the data is incorrect in some
way. Students should be able to refer to data when communicating an
idea. For example, in order to explore the relationship between speed,
time, and distance, students could operate a robot at uniform speed,
and at increasing time intervals to predict how far the robot travels at
that speed. In order to make an accurate prediction, one or two attempts
of differing times would not be enough. The robot may also collect
temperature data from a sensor, but that data would not be relevant for
the task. Students must also make accurate measurements of the
distance the robot travels in order to develop a valid prediction. Students
could record the temperature at noon each day as a basis to show that
temperatures are higher in certain months of the year. If temperatures
are not recorded on non-school days or are recorded incorrectly or at
different times of the day, the data would be incomplete and the ideas
being communicated could be inaccurate. Students may also record the
day of the week on which the data was collected, but this would have no
relevance to whether temperatures are higher or lower. In order to have

Inference and
Models

7. Communicating
about computing

sufficient and accurate data on which to communicate the idea, students
might want to use data provided by a governmental weather agency.

Algorithms and Programming
Identifier Standard and Descriptive Statement Subconcept Practice(s)

5.AP.A.01 Analyze and refine multiple algorithms for the same task and determine
which algorithm is the most efficient.

Different algorithms can achieve the same result; however, sometimes
one algorithm might be more suited for a particular situation. Students
should be able to look at different ways to solve a problem or complete a
task and decide which would be the best solution. For example,
students could create multiple algorithms to plan a route between two
points on a map. They could then look at different mapping software to
change the route based on something that would be better (i.e. shortest
route in miles, time, toll roads, etc.). Students could also compare
algorithms that describe how to get ready for school or other daily tasks.
This could also bridge into other disciplines. For example, students
could write different algorithms to draw a regular polygon and determine
which algorithm would be the easiest to modify or repurpose to draw a
different polygon and which algorithm would be the most efficient at
completing the polygon.

Algorithms 3. Recognizing
and Defining
Computational
Problems
6. Testing and
Refining
Computational
Artifacts

5.AP.V.01 Utilize, create, and modify programs that use, modify, and combine
variables with grade level appropriate data.

Variables are used to store and modify data. At this level,
understanding how to use variables in a variety of ways and change
variable values is sufficient. For example, students may use
mathematical operations to add to the score of a game or subtract from
the number of lives available in a game. Students could also use
multiple variables in mathematical equations (even simple
addition/subtraction) that stores the results into other variables. The use
of a variable is a countdown timer is another example.

Variables 5. Creating
computational
artifacts

5.AP.C.01 Create programs using a programming language that utilize sequencing,
repetition, conditionals, event handlers, and variables to solve a problem
or express ideas both independently and collaboratively.

Control 5. Creating
computational
artifacts

Control structures specify the order (sequence) in which instructions are
executed within a program and can be combined to support the creation
of more complex programs. Events allow portions of a program to run
based on a specific action. For example, students could write a
program to explain the water cycle and when a specific component is
clicked (event), the program would show information about that part of
the water cycle. Conditionals allow for the execution of a portion of code
in a program when a certain condition is true. For example, students
could write a math game that asks for multiplication fact questions and
then uses a conditional to check whether or not the answer that was
entered is correct. Loops allow for the repetition of a sequence of code
multiple times. For example, in a program that produces an animation
about a famous historical character, students could use a loop to have
the character walk across the screen as they introduce themselves.
Students should be able to complete these tasks collaboratively with
other students.

5.AP.M.01 Decompose (break down) large problems into smaller, more
manageable subproblems to facilitate the program development
process.

Decomposition is the act of breaking down tasks into simpler tasks. For
example, students could create program that tells a story. Students
should breakdown creating the program by separating the story into
different scenes. For each scene, they would select a background, place
characters, and program actions.

Modularity 3. Recognizing
and defining
computational
problems

5.AP.M.02 With grade appropriate complexity, modify, remix, or incorporate
portions of an existing program into one's own work, to develop
something new or add more advanced features.

Programs can be broken down into smaller parts, which can be
incorporated into new or existing programs. For example, students could
modify prewritten code from a single-player game to create a two-player
game with slightly different rules, remix and add another scene to an
animated story, use code to make a ball bounce from another program

Modularity 3. Recognizing
and defining
computational
problems
5. Creating
computational
artifacts

in a new basketball game, or modify an image created by another
student.

5.AP.PD.01 Create a plan using an iterative process for the development of a
program that includes others' perspectives and user preferences while
solving simple problems.

Planning is an important part of the iterative process of program
development. Students outline key features, time and resource
constraints, and user (and others) expectations. Students should
document the plan as, for example, a storyboard, flowchart,
pseudocode, or story map.

Program
Development

1. Fostering an
Inclusive
Computing Culture
5. Creating
computational
artifacts

5.AP.PD.02 Use proper citations and document when ideas are borrowed and
changed for their own use (e.g., using pictures created by others, using
music created by others, remixing programming projects).

Intellectual property rights can vary by country but copyright laws give
the creator of a work a set of rights that prevents others from copying
the work and using it in ways that they may not like. Students should
identify instances of remixing, when ideas are borrowed and iterated
upon, and credit the original creator. Students should also consider
common licenses that place limitations or restrictions on the use of
computational artifacts, such as images and music downloaded from the
Internet. At this stage, attribution should be written in the format required
by the teacher and should always be included on any programs shared
online.

Program
Development

5. Creating
computational
artifacts
7. Communicating
about computing

5.AP.PD.03 Analyze, debug (identify/fix errors), and create a program that includes
sequencing, repetition and variables in a programming language.

As students develop programs they should continuously test those
programs to see that they do what was expected and fix (debug), any
errors. Students should also be able to successfully debug simple errors
in programs created by others.

Program
Development

1. Fostering an
Inclusive
Computing Culture
2. Collaborating
Around Computing
6. Testing and
Refining
Computational
Artifacts

5.AP.PD.04 Take on varying roles collaborating with peers to give feedback at
different stages of program development, including design and
implementation.

Collaborative computing is the process of performing a computational
task by working in pairs or on teams. Because it involves asking for the
contributions and feedback of others, effective collaboration can lead to
better outcomes than working independently. Students should take turns
in different roles during program development, such as note taker,
facilitator, program tester, or “driver” of the computer.

Program
Development

2. Collaborating
Around Computing
7. Communicating
about computing

Impacts of Computing
Identifier Standard and Descriptive Statement Subconcept Practice(s)

5.IC.C.01 Develop, test, and refine digital artifacts to improve accessibility and
usability for a computing device or program.

The development and modification of computing technology are driven
by people's needs and wants and can affect groups differently.
Anticipating the needs and wants of diverse end users requires students
to purposefully consider potential perspectives of users with different
backgrounds, ability levels, points of view, and disabilities. For example,
students may consider using both speech and text to convey information
in a game. They may also wish to vary the types of programs they
create, knowing that not everyone shares their own tastes.

Culture 4. Developing and
Using Abstractions
5. Creating
Computational
Artifacts
6. Testing and
Refining
Computational
Artifacts

5.IC.SI.01 Develop a code of conduct, explain, and practice grade-level
appropriate behavior and responsibilities while participating in an online
community. Identify and report inappropriate behavior. (Digital
Citizenship - review of all nine components, but focused on Digital
Commerce, Digital Law, and Digital Security.

The practice of appropriate online behavior derives from the
identification of inappropriate behavior and the identification of what
makes someone a poor digital citizen or know what not to do in order to
be ethical online. Digital citizenship is described with nine categories:
digital access (awareness of materials gained online and being mindful
of who does/does not have access), digital commerce (awareness of

Social
Interactions

1. Fostering an
Inclusive
Computing Culture
7. Communicating
about Computing

illegal and legal exchanges online e.g. illegal downloading), digital
communication (communicating and collaborating properly online),
digital literacy (the ability to use new technology quickly and
appropriately), digital etiquette (appropriate conduct), digital law (ethical
use of technology e.g. hacking information, downloading illegally,
plagiarizing, creating viruses, sending spam, or stealing someone's
identify), digital rights and responsibilities (knowing your rights to free
speech and privacy, but handling it responsibly online) digital health and
wellness (caring for your physical and psychological wellbeing online),
digital security (proactive about protecting your devices and identity
online e.g. data backup, use of a surge protector, virus protection).

5.IC.SI.02 As a team, collaborate with people and resources outside of your normal
space to include diverse perspectives to improve computational
products.

Computing provides the possibility for collaboration and sharing of ideas
and allows the benefit of diverse perspectives. For example, students
could seek feedback from other groups in their class or students at
another grade level. Or, with guidance from their teacher, they could use
video conferencing tools or other online collaborative spaces, such as
blogs, wikis, forums, or website comments to gather feedback from
individuals and groups about programming projects.

Social
Interactions

1. Fostering an
Inclusive
Computing Culture
2. Collaborating
Around Computing

5.IC.H.01 Identify and explain the evolution of computing technologies that have
changed the world.

New computing technology is created and existing technologies are
modified for many reasons, including to increase their benefits,
decrease their risks, and meet societal needs. Students, with guidance
from their teacher, should discuss topics that relate to the history of
technology and the changes in the world due to technology. Topics
could be based on current news content, such as robotics, wireless
Internet, mobile computing devices, GPS systems, wearable computing,
or how social media has influenced social and political changes.

History 1. Fostering an
Inclusive
Computing Culture
7. Communicating
about Computing

5.IC.SLE.01 Observe intellectual property rights and give appropriate credit when
using resources.

Safety, Law, &
Ethics

5. Creating
Computational
Artifacts

Ethical complications arise from the opportunities provided by
computing. The ease of sending and receiving copies of media on the
internet such as video, photos, and music, creates the opportunity for
unauthorized use, such as online piracy, and disregard of copyrights.
Students should consider the licenses on computational artifacts that
they wish to use. For example, the license on a downloaded image rn
audio file may have restrictions that prohibit modification, require
attribution, or prohibit use entirely.

5.IC.CP.01 Design a visual product depicting the connections between computer
science and other fields.

Explaining the reason why of any computer task will lead students to
understand how other professionals within their community might use
similar tasks in their occupations. Making correlations and a purpose for
tasks makes CS relevant to their lives as they age. Students make a
direct correlation to a local business.

Community
Partnerships

1. Fostering an
Inclusive
Computing Culture
2. Collaborating
Around Computing
7. Communicating
about computing

Middle Grades (Grades 6-8)
Computing Systems
Identifier Standard and Descriptive Statement Subconcept Practice(s)

MG.CS.D.01 Develop and implement a process to evaluate existing computing
devices and recommend improvements to design based on analysis of
how other users interact with the device.

The study of human–computer interaction (HCI) can improve the design
of devices, including both hardware and software. Students should
make recommendations for existing devices (e.g., a laptop, phone, or
tablet) or design their own components or interface (e.g., create their
own controllers). Teachers can guide students to consider usability
through several lenses, including accessibility, ergonomics, and
learnability. For example, assistive devices provide capabilities such as
scanning written information and converting it to speech.

Devices 3. Recognizing
and defining
computational
problems

MG.CS.HS.01 Model a computing system involving multiple considerations and
potential tradeoffs of software and hardware, such as functionality, cost,
size, speed, accessibility, and aesthetics

Collecting and exchanging data involves input, output, storage, and
processing. When possible, students should select the hardware and
software components for their project designs by considering factors
such as functionality, cost, size, speed, accessibility, and aesthetics. For
example, components for a mobile app could include accelerometer,
GPS, and speech recognition. The choice of a device that connects
wirelessly through a Bluetooth connection versus a physical USB
connection involves a tradeoff between mobility and the need for an
additional power source for the wireless device.

Hardware and
Software

5. Creating
computational
artifacts

MG.CS.IO.01 Know and apply grade-level appropriate skills with input and output
devices.

Students can identify and use appropriate in-put devices (i.e. mouse,
keyboard, microphone, camera, scanner) and out-put devices (i.e.
monitor, printer, 3d-printer, projector, robots, audio devices, VR
headsets). Create accurate typed text with speed appropriate for grade
level (i.e. keyboarding between 20-30 words per minute with 90%

Input and Output 7. Communicating
about computing

accuracy). Typing words and sentences without looking at the keyboard.
Access function keys and keyboard shortcuts as needed in software
applications. Type at least seven pages of text into an appropriate
software program in a single setting.

MG.CS.T.01 Systematically identify, fix, and document increasingly complex software
and hardware problems with computing devices and their components.

Since a computing device may interact with interconnected devices
within a system, problems may not be due to the specific computing
device itself but to devices connected to it. Just as pilots use checklists
to troubleshoot problems with aircraft systems, students should use a
similar, structured process to troubleshoot problems with computing
systems and ensure that potential solutions are not overlooked.
Examples of troubleshooting strategies include following a
troubleshooting flow diagram, making changes to software to see if
hardware will work, checking connections and settings, and swapping in
working components.

Troubleshooting 6. Testing and
refining
computational
artifacts

Networks & the Internet
Identifier Standard and Descriptive Statement Subconcept Practice(s)

MG.NI.NCO.01 Explain protocols and their importance to data transmission; model how
packets are broken down into smaller pieces and how they are
delivered.

Protocols are rules that define how messages between computers are
sent. They determine how quickly and securely information is
transmitted across networks and the Internet, as well as how to handle
errors in transmission. Students should model how data is sent using
protocols to choose the fastest path, to deal with missing information,
and to deliver sensitive data securely. For example, students could
devise a plan for resending lost information or for interpreting a picture
that has missing pieces. The priority at this grade level is understanding
the purpose of protocols and how they enable secure and errorless
communication. Knowledge of the details of how specific protocols work
is not expected.

Network
Communication &
Organization

4. Developing and
using abstractions

MG.NI.C.01 Evaluate physical and digital procedures that could be implemented to
protect electronic data/information; explain the impacts of hacking,
ransomware, scams, fake scans, and ethical/legal concerns.

Information that is stored online is vulnerable to unwanted access.
Examples of physical security measures to protect data include keeping
passwords hidden, locking doors, making backup copies on external
storage devices, and erasing a storage device before it is reused.
Examples of digital security measures include secure router admin
passwords, firewalls that limit access to private networks, and the use of
a protocol such as HTTPS to ensure secure data transmission, and two-
factor authentication.

Cybersecurity 7. Communicating
about computing

MG.NI.C.02 Compare the advantages and disadvantages of multiple methods of
encryption to model the secure transmission of information.

Encryption can be as simple as letter substitution or as complicated as
modern methods used to secure networks and the Internet. Students
should encode and decode messages using a variety of encryption
methods, and they should understand the different levels of complexity
used to hide or secure information. For example, students could secure
messages using methods such as Caesar ciphers or steganography
(i.e., hiding messages inside a picture or other data). They can also
model more complicated methods, such as public key encryption,
through unplugged activities.

Cybersecurity 4. Developing and
using abstractions

Data Analysis
Identifier Standard and Descriptive Statement Subconcept Practice(s)

MG.DA.S.01 Analyze multiple methods of representing data and choose the most
appropriate method for representing data.

Data representations occur at multiple levels of abstraction, from the
physical storage of bits to the arrangement of information into organized
formats (e.g., tables). Students should represent the same data in
multiple ways. For example, students could represent the same color
using binary, RGB values, hex codes (low-level representations), as

Storage 4. Developing and
using abstractions

well as forms understandable by people, including words, symbols, and
digital displays of the color (high-level representations).

MG.DA.C.01 Develop, implement, and refine a process that utilizes computational
tools to collect meaningful data.

Students need to be able to distinguish between different types of data
and computational tools and how this affects the accuracy and precision
of the data (for example, surveys versus sensor data).

Collection 6. Testing and
refining
computational
artifacts

MG.DA.CVT.01 Develop, implement, and refine a process to make data more useful and
reliable.

As students continue to build on their ability to organize and present
data visually to support a claim, they will need to understand when and
how to transform data for this purpose. Students should transform data
to remove errors, highlight or expose relationships, and/or make it
easier for computers to process. The cleaning of data is an important
transformation for ensuring consistent format and reducing noise and
errors (e.g., removing irrelevant responses in a survey). An example of
a transformation that highlights a relationship is representing males and
females as percentages of a whole instead of as individual counts.

Visualization &
Transformation

6. Testing and
refining
computational
artifacts

MG.DA.IM.01 Refine computational models based on the data generated by the
models.

A model may be a programmed simulation of events or a representation
of how various data is related. In order to refine a model, students need
to consider which data points are relevant, how data points relate to
each other, and if the data is accurate. For example, students may
make a prediction about how far a ball will travel based on a table of
data related to the height and angle of a track. The students could then
test and refine their model by comparing predicted versus actual results
and considering whether other factors are relevant (e.g., size and mass
of the ball). Additionally, students could refine game mechanics based
on test outcomes in order to make the game more balanced or fair.

Inference and
Models

4. Developing and
using abstractions
5. Creating
computational
artifacts

Algorithms and Programming
Identifier Standard and Descriptive Statement Subconcept Practice(s)

MG.AP.A.01 Design algorithms in natural language, flow and control diagrams,
comments within code, and/or pseudocode to solve complex problems.

Complex problems are problems that would be difficult for students to
solve computationally. Students should use pseudocode and/or
flowcharts to organize and sequence an algorithm that addresses a
complex problem, even though they may not actually program the
solutions. For example, students might express an algorithm that
produces a recommendation for purchasing sneakers based on inputs
such as size, colors, brand, comfort, and cost. Testing the algorithm with
a wide range of inputs and users allows students to refine their
recommendation algorithm and to identify other inputs they may have
initially excluded.

Algorithms 4. Developing and
using abstractions

MG.AP.V.01 Create programs using variables with purposeful and thoughtful naming
conventions for identifiers to improve program readability.

A variable is like a container with a name, in which the contents may
change, but the name (identifier) does not. When planning and
developing programs, students should decide when and how to declare
and name new variables. Students should use naming conventions to
improve program readability. Examples of operations include adding
points to the score, combining user input with words to make a
sentence, changing the size of a picture, or adding a name to a list of
people.

Variables 5. Creating
computational
artifacts

MG.AP.C.01 Develop programs that utilize combinations of nested repetition,
compound conditionals, procedures without parameters, and the
manipulation of variables representing different data types.

Control structures can be combined in many ways. Nested loops are
loops placed within loops. Compound conditionals combine two or more
conditions in a logical relationship (e.g., using AND, OR, and NOT), and
nesting conditionals within one another allows the result of one
conditional to lead to another. For example, when programming an
interactive story, students could use a compound conditional within a

Control 5. Creating
computational
artifacts

loop to unlock a door only if a character has a key AND is touching the
door.

MG.AP.M.01 Decompose problems and subproblems into parts to facilitate the
design, implementation, and review of complex programs.

Students should break down problems into subproblems, which can be
further broken down to smaller parts. Decomposition facilitates aspects
of program development by allowing students to focus on one piece at a
time (e.g., getting input from the user, processing the data, and
displaying the result to the user). Decomposition also enables different
students to work on different parts at the same time. For example,
animations can be decomposed into multiple scenes, which can be
developed independently.

Modularity 3. Recognizing
and defining
computational
problems

MG.AP.PD.01 Seek and incorporate feedback from team members and users to refine
a solution to a problem that meets the needs of diverse users.

Development teams that employ user-centered design create solutions
(e.g., programs and devices) that can have a large societal impact, such
as an app that allows people with speech difficulties to translate hard-to-
understand pronunciation into understandable language. Students
should begin to seek diverse perspectives throughout the design
process to improve their computational artifacts. Considerations of the
end-user may include usability, accessibility, age-appropriate content,
respectful language, user perspective, pronoun use, color contrast, and
ease of use.

Program
Development

1. Fostering an
inclusive
computing culture
2. Collaborating
around computing

MG.AP.PD.02 Incorporate existing code, media, and libraries into original programs of
increasing complexity and give attribution.

Building on the work of others enables students to produce more
interesting and powerful creations. Students should use portions of
code, algorithms, and/or digital media in their own programs and
websites. At this level, they may also import libraries and connect to web
application program interfaces (APIs). For example, when creating a
side-scrolling game, students may incorporate portions of code that
create a realistic jump movement from another person's game, and they
may also import Creative Commons-licensed images to use in the

Program
Development

4. Developing and
using abstractions
5. Creating
computational
artifacts
7. Communicating
about computing

background. Students should give attribution to the original creators to
acknowledge their contributions.

MG.AP.PD.03 Systematically test and refine programs using a range of student
created inputs.

Use cases and test cases are created and analyzed to better meet the
needs of users and to evaluate whether programs function as intended.
At this level, testing should become a deliberate process that is more
iterative, systematic, and proactive than at lower levels. Students should
begin to test programs by considering potential errors, such as what will
happen if a user enters invalid input (e.g., negative numbers and 0
instead of positive numbers).

Program
Development

6. Testing and
refining
computational
artifacts

MG.AP.PD.04 Explain how effective communication between participants is required
for successful collaboration when developing computational artifacts.

Collaboration is a common and crucial practice in programming
development. Often, many individuals and groups work on the
interdependent parts of a project together. Students should assume pre-
defined roles within their teams and manage the project workflow using
structured timelines. With teacher guidance, they will begin to create
collective goals, expectations, and equitable workloads. For example,
students may divide the design stage of a game into planning the
storyboard, flowchart, and different parts of the game mechanics. They
can then distribute tasks and roles among members of the team, assign
deadlines, and track progress towards goals.

Program
Development

2. Collaborating
around computing

MG.AP.PD.05 Document text-based programs of increasing complexity in order to
make them easier to follow, test, and debug.

Documentation allows creators and others to more easily use and
understand a program. Students should provide documentation for end
users that explains their artifacts and how they function. For example,
students could provide a project overview and clear user instructions.
They should also incorporate comments in their product and
communicate their process using design documents, flowcharts, and
presentations.

Program
Development

7. Communicating
about Computing

Impacts of Computing
Identifier Standard and Descriptive Statement Subconcept Practice(s)

MG.IC.C.01 Describe the trade-offs associated with computing technologies (e.g.
automation), explaining their effects on economies and global societies,
and explore careers related to the field of computer science.

Advancements in computer technology are neither wholly positive nor
negative. However, the ways that people use computing technologies
have tradeoffs. Students should consider current events related to broad
ideas, including privacy, communication, and automation. For example,
driverless cars can increase convenience and reduce accidents, but
they are also susceptible to hacking. The emerging industry will reduce
the number of taxi and shared-ride drivers, but will create more software
engineering and cybersecurity jobs.

Culture 7. Communicating
about computing

MG.IC.C.02 Evaluate and improve the design of existing technologies to meet the
needs of diverse users and increase accessibility and usability.

Students should test and discuss the usability of various technology
tools (e.g., apps, games, and devices) with the teacher's guidance. For
example, facial recognition software that works better for lighter skin
tones was likely developed with a homogeneous testing group and could
be improved by sampling a more diverse population. When discussing
accessibility, students may notice that allowing a user to change font
sizes and colors will not only make an interface usable for people with
low vision but also benefits users in various situations, such as in bright
daylight or a dark room.

Culture 1. Fostering an
inclusive
computing culture

MG.IC.SI.01 Communicate and publish key ideas and details individually or
collaboratively in a way that informs, persuades, and/or entertains using
a variety of digital tools and media-rich resources. Describe and use
safe, appropriate, and responsible practices (netiquette) when
participating in online communities (e.g., discussion groups, blogs,
social networking sites).

Crowdsourcing is gathering services, ideas, or content from a large
group of people, especially from the online community. It can be done at
the local level (e.g., classroom or school) or global level (e.g., age

Social
Interactions

2. Collaborating
around computing
5. Creating
computational
artifacts

appropriate online communities, like Scratch and Minecraft). For
example, a group of students could combine animations to create a
digital community mosaic. They could also solicit feedback from many
people though use of online communities and electronic surveys..

MG.IC.H.01 Identify and describe how the prominent figures in computer science
have impacted and/or progressed the field.

Students will identify and understand how prominent figures in computer
science (i.e. Charles Babbage, Alan Turning, Ada Lovelace, Bill Gates,
Tim Berners-Lee) impacted growth and innovation in the field of
Computer Science.

History 3. Recognizing
and defining
computational
problems

MG.IC.SLE.01 Discuss the social impacts and ethical considerations associated with
cybersecurity, including the positive and malicious purposes of hacking.

Sharing information online can help establish, maintain, and strengthen
connections between people. For example, it allows artists and
designers to display their talents and reach a broad audience. However,
security attacks often start with personal information that is publicly
available online. Social engineering is based on tricking people into
revealing sensitive information and can be thwarted by being wary of
attacks, such as phishing and spoofing.

Safety, Law, &
Ethics

7. Communicating
about computing

MG.IC.CP.01 Formulate a computer-science based solution for a problem or issue by
gathering input from local / regional industry members.

Students will work with local / regional community members to identify
and address a need using computer science practices.

Community
Partnerships

2. Collaborating
around computing
5. Creating
computational
artifacts

Secondary Grades L1 (Grades 9-12) (All Students)
Computing Systems
Identifier Standard and Descriptive Statement Subconcept Practice(s)

L1.CS.D.01 Explain how abstractions hide the underlying implementation details of
computing systems embedded in everyday objects.

Computing devices are often integrated with other systems, including
biological, mechanical, and social systems. A medical device can be
embedded inside a person to monitor and regulate his or her health, a
hearing aid (a type of assistive device) can filter out certain frequencies
and magnify others, a monitoring device installed in a motor vehicle can
track a person’s driving patterns and habits, and a facial recognition
device can be integrated into a security system to identify a person. The
creation of integrated or embedded systems is not an expectation at this
level. Students might select an embedded device such as a car stereo,
identify the types of data (radio station presets, volume level) and
procedures (increase volume, store/recall saved station, mute) it
includes, and explain how the implementation details are hidden from
the user.

Devices 4. Developing and
using abstractions

L1.CS.HS.01 Compare levels of abstraction and interactions between application
software, system software, and hardware layers.

At its most basic level, a computer is composed of physical hardware
and electrical impulses. Multiple layers of software are built upon the
hardware and interact with the layers above and below them to reduce
complexity. System software manages a computing device’s resources
so that software can interact with hardware. For example, text editing
software interacts with the operating system to receive input from the
keyboard, convert the input to bits for storage, and interpret the bits as
readable text to display on the monitor. System software is used on
many different types of devices, such as smart TVs, assistive devices,
virtual components, cloud components, and drones. For example,
students may explore the progression from voltage to binary signal to
logic gates to adders and so on. Knowledge of specific, advanced terms
for computer architecture, such as BIOS, kernel, or bus, is not expected
at this level.

Hardware and
Software

4. Developing and
using abstractions

L1.CS.HS.02 Compare computer systems and determine advantages and drawbacks
of each system.

Hardware and
Software

7. Communicating
about computing

L1.CS.IO.01 Demonstrate efficient use of input and output devices.

Fluency in educational and industry specific input and output devices
including keyboard, mouse, touch screen, microphone, speakers,
screen representations, printing, and other specific input and output
devices.

Input and Output 7. Communicating
about computing

L1.CS.T.01 Develop guidelines that convey systematic troubleshooting strategies
that others can use to identify and fix errors.

Troubleshooting complex problems involves the use of multiple sources
when researching, evaluating, and implementing potential solutions.
Troubleshooting also relies on experience, such as when people
recognize that a problem is similar to one they have seen before or
adapt solutions that have worked in the past. Examples of complex
troubleshooting strategies include resolving connectivity problems,
adjusting system configurations and settings, ensuring hardware and
software compatibility, and transferring data from one device to another.
Students could create a flow chart, a job aid for a help desk employee,
or an expert system.

Troubleshooting 6. Testing and
refining
computational
artifacts

Networks & the Internet
Identifier Standard and Descriptive Statement Subconcept Practice(s)

L1.NI.NCO.01 Evaluate the scalability and reliability of networks, by describing the
relationship between routers, switches, servers, topology, and
addressing.

Each device is assigned an address that uniquely identifies it on the
network. Routers function by comparing IP addresses to determine the
pathways packets should take to reach their destination. Switches
function by comparing MAC addresses to determine which computers or
network segments will receive frames. Students could use online
network simulators to experiment with these factors.

Network
Communication &
Organization

4. Developing and
using abstractions

L1.NI.NCO.02 Compare various security measures, considering tradeoffs between the
usability and security of a computing system.

Security measures may include physical security tokens, two-factor
authentication, and biometric verification, but choosing security
measures involves tradeoffs between the usability and security of the
system. The needs of users and the sensitivity of data determine the
level of security implemented. Students might discuss computer security
policies in place at the local level that present a tradeoff between
usability and security, such as a web filter that prevents access to many
educational sites but keeps the campus network safe.

Network
Communication &
Organization

6. Testing and
refining
computational
artifacts

L1.NI.C.01 Recommend security measures to address various scenarios based on
factors such as efficiency, feasibility, and ethical impacts.

Security measures may include physical security tokens, two-factor
authentication, and biometric verification. Potential security problems,
such as denial-of-service attacks, ransomware, viruses, worms,
spyware, and phishing, exemplify why sensitive data should be securely
stored and transmitted. The timely and reliable access to data and
information services by authorized users, referred to as availability, is
ensured through adequate bandwidth, backups, and other measures.
Students should systematically evaluate the feasibility of using
computational tools to solve given problems or subproblems, such as
through a cost-benefit analysis. Eventually, students should include
more factors in their evaluations, such as how efficiency affects
feasibility or whether a proposed approach raises ethical concerns.

Cybersecurity 3. Recognizing
and defining
computational
problems

L1.NI.C.02 Explain tradeoffs when selecting and implementing cybersecurity
recommendations.

Network security depends on a combination of hardware, software, and
practices that control access to data and systems. The needs of users
and the sensitivity of data determine the level of security implemented.
Every security measure involves tradeoffs between the accessibility and
security of the system. Students should be able to describe, justify, and
document choices they make using terminology appropriate for the
intended audience and purpose. Students could debate issues from the

Cybersecurity 7. Communicating
about computing

perspective of diverse audiences, including individuals, corporations,
privacy advocates, security experts, and government.

Data Analysis
Identifier Standard and Descriptive Statement Subconcept Practice(s)

L1.DA.S.01 Analyze storage types and locations.

Storage 4. Developing and
using abstractions

L1.DA.S.02

Evaluate the tradeoffs in how data elements are organized and where
data is stored.

People make choices about how data elements are organized and
where data is stored. These choices affect cost, speed, reliability,
accessibility, privacy, and integrity. Students should evaluate whether a
chosen solution is most appropriate for a particular problem. Students
might consider the cost, speed, reliability, accessibility, privacy, and
integrity tradeoffs between storing photo data on a mobile device versus
in the cloud.

Storage 3. Recognizing
and defining
computational
problems

L1.DA.C.01 Collect and analyze data.

Collection 4. Developing and
using abstractions

L1.DA.CVT.01 Create interactive data visualizations using software tools to help others
better understand real-world phenomena.

People transform, generalize, simplify, and present large data sets in
different ways to influence how other people interpret and understand
the underlying information. Examples include visualization, aggregation,
rearrangement, and application of mathematical operations. People use
software tools or programming to create powerful, interactive data
visualizations and perform a range of mathematical operations to
transform and analyze data. Students should model phenomena as
systems, with rules governing the interactions within the system and
evaluate these models against real-world observations. For example,
flocking behaviors, queueing, or life cycles. Google Fusion Tables can
provide access to data visualization online.

Visualization &
Transformation

4. Developing and
using abstractions

L1.DA.IM.01 Create computational models that represent the relationships among
different elements of data collected from a phenomenon or process.

Computational models make predictions about processes or
phenomenon based on selected data and features. The amount, quality,
and diversity of data and the features chosen can affect the quality of a
model and ability to understand a system. Predictions or inferences are
tested to validate models. Students should model phenomena as
systems, with rules governing the interactions within the system.
Students should analyze and evaluate these models against real-world
observations. For example, students might create a simple producer–
consumer ecosystem model using a programming tool. Eventually, they
could progress to creating more complex and realistic interactions
between species, such as predation, competition, or symbiosis, and
evaluate the model based on data gathered from nature.

Inference and
Models

4. Developing and
using abstractions

Algorithms and Programming
Identifier Standard and Descriptive Statement Subconcept Practice(s)

L1.AP.A.01 Create prototypes that use algorithms to solve computational problems
by leveraging prior student knowledge and personal interests.

A prototype is a computational artifact that demonstrates the core
functionality of a product or process. Prototypes are useful for getting
early feedback in the design process, and can yield insight into the
feasibility of a product. The process of developing computational
artifacts embraces both creative expression and the exploration of ideas
to create prototypes and solve computational problems. Students create
artifacts that are personally relevant or beneficial to their community and
beyond. Students should develop artifacts in response to a task or a
computational problem that demonstrate the performance, reusability,
and ease of implementation of an algorithm.

Algorithms 5. Creating
computational
artifacts

L1.AP.V.01 Use lists to simplify solutions, generalizing computational problems
instead of repeatedly using simple variables.

Variables 4. Developing and
using abstractions

Students should be able to identify common features in multiple
segments of code and substitute a single segment that uses lists
(arrays) to account for the differences.

L1.AP.C.01 Justify the selection of specific control structures when tradeoffs involve
implementation, readability, and program performance, and explain the
benefits and drawbacks of choices made.

Implementation includes the choice of programming language, which
affects the time and effort required to create a program. Readability
refers to how clear the program is to other programmers and can be
improved through documentation. The discussion of performance is
limited to a theoretical understanding of execution time and storage
requirements; a quantitative analysis is not expected. Control structures
at this level may include conditional statements, loops, event handlers,
and recursion. For example, students might compare the readability and
program performance of iterative and recursive implementations of
procedures that calculate the Fibonacci sequence.

Control 5. Creating
computational
artifacts

L1.AP.C.02 Design and iteratively develop computational artifacts for practical intent,
personal expression, or to address a societal issue by using events to
initiate instructions.

In this context, relevant computational artifacts include programs, mobile
apps, or web apps. Events can be user-initiated, such as a button press,
or system-initiated, such as a timer firing. At previous levels, students
have learned to create and call procedures. Here, students design
procedures that are called by events. Students might create a mobile
app that updates a list of nearby points of interest when the device
detects that its location has been changed.

Control 5. Creating
computational
artifacts

L1.AP.C.03 Decompose problems into smaller components through systematic
analysis, using constructs such as procedures, modules, and/or objects.

At this level, students should decompose complex problems into
manageable subproblems that could potentially be solved with programs
or procedures that already exist. For example, students could create an
app to solve a community problem by connecting to an online database
through an application programming interface (API).

Control 5. Creating
computational
artifacts

L1.AP.M.01 Create computational artifacts by systematically organizing,
manipulating and/or processing data.

Computational artifacts can be created by combining and modifying
existing artifacts or by developing new artifacts. Examples of
computational artifacts include programs, simulations, visualizations,
digital animations, robotic systems, and apps. Complex programs are
designed as systems of interacting modules, each with a specific role,
coordinating for a common overall purpose. Modules allow for better
management of complex tasks. The focus at this level is understanding
a program as a system with relationships between modules. The choice
of implementation, such as programming language or paradigm, may
vary. Students could incorporate computer vision libraries to increase
the capabilities of a robot or leverage open-source JavaScript libraries to
expand the functionality of a web application.

Modularity 3. Recognizing
and defining
computational
problems

L1.AP.M.02 Systematically design and develop programs for broad audiences by
incorporating feedback from users.

Examples of programs could include games, utilities, and mobile
applications. Students at lower levels collect feedback and revise
programs. At this level, students should do so through a systematic
process that includes feedback from broad audiences. Students might
create a user satisfaction survey and brainstorm distribution methods
that could yield feedback from a diverse audience, documenting the
process they took to incorporate selected feedback in product revisions.

Modularity 5. Creating
computational
artifacts

L1.AP.PD.01 Evaluate licenses that limit or restrict use of computational artifacts
when using resources such as libraries.

Examples of software licenses include copyright, freeware, and the
many open-source licensing schemes. At previous levels, students
adhered to licensing schemes. At this level, they should consider
licensing implications for their own work, especially when incorporating
libraries and other resources. Students might consider two software
libraries that address a similar need, justifying their choice based on the
library that has the least restrictive license.

Program
Development

7. Communicating
about computing

L1.AP.PD.02 Evaluate and refine computational artifacts to make them more usable
and accessible.

Testing and refinement is the deliberate and iterative process of
improving a computational artifact. This process includes debugging
(identifying and fixing errors) and comparing actual outcomes to
intended outcomes. Students should respond to the changing needs
and expectations of end users and improve the performance, reliability,
usability, and accessibility of artifacts. For example, students could
incorporate feedback from a variety of end users to help guide the size
and placement of menus and buttons in a user interface.

Program
Development

6. Testing and
refining
computational
artifacts

L1.AP.PD.03 Design and develop computational artifacts working in team roles using
collaborative tools.

Collaborative tools could be as complex as source code version control
system or as simple as a collaborative word processor. Team roles in
pair programming are driver and navigator but could be more
specialized in larger teams. As programs grow more complex, the
choice of resources that aid program development becomes
increasingly important and should be made by the students. Students
might work as a team to develop a mobile application that addresses a
problem relevant to the school or community, selecting appropriate tools
to establish and manage the project timeline; design, share, and revise
graphical user interface elements; and track planned, in-progress, and
completed components.

Program
Development

2. Collaborating
around computing

L1.AP.PD.04 Document design decisions using text, graphics, presentations, and/or
demonstrations in the development of complex programs.

Complex programs are designed as systems of interacting modules,
each with a specific role, coordinating for a common overall purpose.
These modules can be procedures within a program; combinations of
data and procedures; or independent, but interrelated, programs. The
development of complex programs is aided by resources such as
libraries and tools to edit and manage parts of the program.

Program
Development

7. Communicating
about computing

Impacts of Computing
Identifier Standard and Descriptive Statement Subconcept Practice(s)

L1.IC.C.01 Evaluate the ways computing impacts personal, ethical, social,
economic, and cultural practices.

Computing may improve, harm, or maintain practices. Equity deficits,
such as minimal exposure to computing, access to education, and
training opportunities, are related to larger, systemic problems in
society. Students should be able to evaluate the accessibility of a
product to a broad group of end users, such as people who lack access
to broadband or who have various disabilities. Students should also
begin to identify potential bias during the design process to maximize
accessibility in product design.

Culture 1. Fostering an
inclusive
computing culture

L1.IC.C.02 Test and refine computational artifacts to reduce bias and equity deficits.

Biases could include incorrect assumptions developers have made
about their user base. Equity deficits include minimal exposure to
computing, access to education, and training opportunities. Students
should begin to identify potential bias during the design process to
maximize accessibility in product design and become aware of
professionally accepted accessibility standards to evaluate
computational artifacts for accessibility.

Culture 1. Fostering an
inclusive
computing culture

L1.IC.C.03 Demonstrate how a given algorithm applies to problems across
disciplines.

Computation can share features with disciplines such as art and music
by algorithmically translating human intention into an artifact. Students
should be able to identify real-world problems that span multiple
disciplines, such as increasing bike safety with new helmet technology,
and that can be solved computationally.

Culture 3. Recognizing
and defining
computational
problems

L1.IC.SI.01 Compare and contrast the benefits and drawbacks of social media.

Social
Interactions

2. Collaborating
around computing

L1.IC.H.01 Hypothesize the impact of the innovations of computing systems for the
next decade.

History 7. Communicating
about computing

As computers become interconnected in each aspect of society, more
powerful, and students become more reliant on them, students should
be able describe the number of times computers or devices are
accessed each day by teachers or peers in class and discuss what life
would be like without them.

L1.IC.SLE.01 Explain the beneficial and harmful effects that intellectual property laws
can have on innovation.

Laws govern many aspects of computing, such as privacy, data,
property, information, and identity. These laws can have beneficial and
harmful effects, such as expediting or delaying advancements in
computing and protecting or infringing upon people’s rights. International
differences in laws and ethics have implications for computing. For
examples, laws that mandate the blocking of some file-sharing websites
may reduce online piracy but can restrict the right to access information.
Firewalls can be used to block harmful viruses and malware but can
also be used for media censorship. Students should be aware of
intellectual property laws and be able to explain how they are used to
protect the interests of innovators and how patent trolls abuse the laws
for financial gain.

Safety, Law, &
Ethics

7. Communicating
about computing

L1.IC.SLE.02 Explain the privacy concerns related to the collection and generation of
data through automated processes (e.g., how businesses, social media,
and the government collects and uses data) that may not be evident to
users.

Data can be collected and aggregated across millions of people, even
when they are not actively engaging with or physically near the data
collection devices. This automated and nonevident collection can raise
privacy concerns, such as social media sites mining an account even
when the user is not online. Other examples include surveillance video
used in a store to track customers for security or information about
purchase habits or the monitoring of road traffic to change signals in real
time to improve road efficiency without drivers being aware. Methods
and devices for collecting data can differ by the amount of storage
required, level of detail collected, and sampling rates.

Safety, Law, &
Ethics

7. Communicating
about computing

L1.IC.SLE.03 Evaluate the social and economic implications of privacy in the context
of safety, law, or ethics.

Laws govern many aspects of computing, such as privacy, data,
property, information, and identity. International differences in laws and
ethics have implications for computing. Students might review case
studies or current events which present an ethical dilemma when an
individual's right to privacy is at odds with the safety, security, or
wellbeing of a community.

Safety, Law, &
Ethics

7. Communicating
about computing

L1.IC.CP.01 Explore computing, software, and data storage systems in local
industries.

Community
Partnerships

7. Communicating
about computing

Secondary Grades L2 (Grades 9-12) (Students who wish to pursue computer
science beyond what is expected of all students)
Computing Systems
Identifier Standard and Descriptive Statement Subconcept Practice(s)

L2.CS.D.01 Describe how internal and external parts of computing devices function
to form a system.

Devices 4. Developing and
using abstractions

L2.CS.HS.01 Categorize the roles of operating system software.

Examples of roles could include memory management, data
storage/retrieval, processes management, and access control.

Hardware and
Software

4. Developing and
using abstractions

L2.CS.HS.02 Compare options for building a computer systems and determine
advantages and drawbacks of each piece and how it will affect the
overall performance.

Hardware and
Software

7. Communicating
about computing

L2.CS.IO.01 Demonstrate use of course specific advanced input and output devices
related to field.

Examples could include robotics, joysticks, motion sensors, movement
sensors, GPS, and various other specific to CTE courses.

Input and Output 7. Communicating
about computing

L2.CS.T.01 Illustrate ways computing systems implement logic, input, and output
through hardware components.

Examples of components could include logic gates and IO pins.

Troubleshooting 6. Testing and
refining
computational
artifacts

Networks & the Internet
Identifier Standard and Descriptive Statement Subconcept Practice(s)

L2.NI.NCO.01 Describe the issues that impact network functionality (e.g., bandwidth,
load, delay, topology).

Recommend use of free online network simulators to explore how these
issues impact network functionality.

Network
Communication &
Organization

4. Developing and
using abstractions

L2.NI.NCO.02 Give examples to illustrate how sensitive data can be affected by
malware and other attacks.

Network
Communication &
Organization

6. Testing and
refining
computational
artifacts

L2.NI.C.01 Compare ways software developers protect devices and information
from unauthorized access.

Examples of security concerns to consider: encryption and
authentication strategies, secure coding, and safeguarding keys.

Cybersecurity 3. Recognizing
and defining
computational
problems

L2.NI.C.02 Use encryption and decryption algorithms to transmit/ receive an
encrypted message.

Cybersecurity 7. Communicating
about computing

Data Analysis
Identifier Standard and Descriptive Statement Subconcept Practice(s)

L2.DA.S.01 Translate and compare different bit representations of data types, such
as characters, numbers, and images.

Storage 4. Developing and
using abstractions

L2.DA.S.02

Analyze file systems created for keeping track of files on the hard disk.

Storage 3. Recognizing
and defining
computational
problems

L2.DA.C.01 Select data collection tools and techniques to generate data sets that
support a claim or communicate information.

Collection 4. Developing and
using abstractions

L2.DA.CVT.01 Use data analysis tools and techniques to identify patterns in data
representing complex systems.

For example, identify trends in a dataset representing social media
interactions, movie reviews, or shopping patterns.

Visualization &
Transformation

4. Developing and
using abstractions

L2.DA.IM.01 Evaluate the ability of models and simulations to test and support the
refinement of hypotheses. (e.g., flocking behaviors, life cycles, etc.)

Inference and
Models

4. Developing and
using abstractions

Algorithms and Programming
Identifier Standard and Descriptive Statement Subconcept Practice(s)

L2.AP.A.01 Describe how artificial intelligence algorithms drive many software and
physical systems (e.g., digital advertising, autonomous robots, computer
vision, pattern recognition, text analysis).

Algorithms 5. Creating
computational
artifacts

L2.AP.A.02 Describe how artificial intelligence drives many software and physical
systems.

Examples include digital ad delivery, self-driving cars, and credit card
fraud detection.

Algorithms 5. Creating
computational
artifacts

L2.AP.A.03 Critically examine and trace classic algorithms (e.g., selection sort,
insertion sort, binary search, linear search).

Algorithms 5. Creating
computational
artifacts

L2.AP.A.04 Implement an artificial intelligence algorithm to play a game against a
human opponent or solve a problem.

Games do not have to be complex. Simple guessing games, Tic-Tac-
Toe, or simple robot commands will be sufficient.

Algorithms 5. Creating
computational
artifacts

L2.AP.A.05 Use and adapt classic algorithms to solve computational problems.

Examples could include sorting and searching.

Algorithms 5. Creating
computational
artifacts

L2.AP.A.06 Evaluate algorithms in terms of their efficiency, correctness, and clarity.

Examples could include sorting and searching.

Algorithms 5. Creating
computational
artifacts

L2.AP.V.01 Compare and contrast simple data structures and their uses to simplify
solutions, generalizing computational problems instead of repeatedly
using primitive variables.

Examples could include strings, lists, arrays, stacks, and queues.

Variables 4. Developing and
using abstractions

L2.AP.C.01 Trace the execution of repetition (e.g., loops, recursion), illustrating
output and changes in values of named variables.

Control 5. Creating
computational
artifacts

L2.AP.M.01 Construct solutions to problems using student-created components,
such as procedures, modules and/or objects.

Modularity 3. Recognizing
and defining
computational
problems

L2.AP.M.02 Analyze a large-scale computational problem and identify generalizable
patterns that can be applied to a solution.

As students encounter complex, real-world problems that span multiple
disciplines or social systems, they should decompose complex problems
into manageable subproblems that could potentially be solved with
programs or procedures that already exist. For example, students could
create an app to solve a community problem by connecting to an online
database through an application programming interface (API).

Modularity 5. Creating
computational
artifacts

L2.AP.M.03 Demonstrate code reuse by creating programming solutions using
libraries and APIs.

Libraries and APIs can be student-created or common graphics libraries
or maps APIs, for example.

Modularity 5. Creating
computational
artifacts

L2.AP.PD.01 Plan and develop programs for broad audiences using a software life
cycle process.

Processes could include agile, spiral, or waterfall.

Program
Development

7. Communicating
about computing

L2.AP.PD.02 Explain security issues that might lead to compromised computer
programs.

For example, common issues include lack of bounds checking, poor
input validation, and circular references.

Program
Development

6. Testing and
refining
computational
artifacts

L2.AP.PD.03 Develop programs for multiple computing platforms.

Example platforms could include: computer desktop, web, or mobile.

Program
Development

2. Collaborating
around computing

L2.AP.PD.04 Use version control systems, integrated development environments
(IDEs), and collaborative tools and practices (code documentation) in a
group software project.

Group software projects can be assigned or student-selected.

Program
Development

7. Communicating
about computing

L2.AP.PD.05 Develop and use a series of test cases to verify that a program performs
according to its design specifications.

At this level, students are expected to select their own test cases.

Program
Development

7. Communicating
about computing

L2.AP.PD.06 Modify an existing program to add additional functionality and discuss
intended and unintended implications (e.g., breaking other functionality).

For instance, changes made to a method or function signature could
break invocations of that method elsewhere in a system.

Program
Development

7. Communicating
about computing

L2.AP.PD.07 Evaluate key qualities of a program through a process such as a code
review.

Examples of qualities could include correctness, usability, readability,
efficiency, portability and scalability.

Program
Development

7. Communicating
about computing

L2.AP.PD.08 Compare multiple programming languages and discuss how their
features make them suitable for solving different types of problems.

Examples of features include blocks versus text, indentation versus
curly braces, and high-level versus low- level.

Program
Development

7. Communicating
about computing

Impacts of Computing
Identifier Standard and Descriptive Statement Subconcept Practice(s)

L2.IC.C.01 Evaluate the beneficial and harmful effects that computational artifacts
and innovations have on society.

Culture 1. Fostering an
inclusive
computing culture

L2.IC.C.02 Evaluate the impact of equity, access, and influence on the distribution
of computing resources in a global society.

Culture 1. Fostering an
inclusive
computing culture

L2.IC.C.03 Design and implement a study that evaluates or predicts how computing
has revolutionized an aspect of our culture and how it might evolve (e.g.,
education, healthcare, art/entertainment, energy).

Areas to consider might include education, healthcare,
art/entertainment, and energy.

Culture 3. Recognizing
and defining
computational
problems

L2.IC.SI.01 Use tools and methods for collaboration on a project to increase
connectivity of people in different cultures and career fields.

Social
Interactions

2. Collaborating
around computing

L2.IC.H.01 Analyze trends of computing and how those trends have changed over
time.

History 7. Communicating
about computing

L2.IC.SLE.01 Debate laws and regulations that impact the development and use of
software.

Safety, Law, &
Ethics

7. Communicating
about computing

L2.IC.SLE.02 Determine ways to test the validity of information located online.

Safety, Law, &
Ethics

7. Communicating
about computing

L2.IC.SLE.03 Evaluate the social and economic consequences of how law and ethics
interact with digital aspects of privacy, data, property, information, and
identity.

Safety, Law, &
Ethics

7. Communicating
about computing

L2.IC.CP.01 Collaborate with local industry partners to design and implement a
viable mentorship.

Community
Partnerships

2. Collaborating
around computing

